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Adter reading tius unit, the students will be alve e

Recall complex number z represented by an expression of the form z=a+ib or of

the form (g, b) where a and bare real numbers and =~./—_1

Recognize a as real part of z and b as imaginary part of 2

Know the condition for equality of complex aumbers

Carry out basic operations on complex numbers

Define Z = a —ib as the complex conjugate of z=a+ib

Define|z|=+a? + b’ as the absolute value or modulus of a complex number z=a+ib

Describe algebruic properties of complex numbers (e.g. commutative, associative and
distributive) with respect to ‘+’ and *x’

Know additive identity and multiplicative identity for the set of complex numbers
Find additive inverse and muitiplicative inverse of a complex number 2

Demonstrate the following properties

nNHZmocC —-wn

. |z|=|—z|=|2|=|—i| o7 =17} z2=|z|2. 2+ 2, =-z-1'+ z_z.
— T B
2122 =ZIZZ, (_l) — Tl ) 22 ?‘-'0.
22 22
@ Find real and imaginary parts of the following type of complex numbers
x, +iy Y
o (x+iy), . (—'A) , X, +iy,#0, wheren= 1, and+2
X, 1y,

@ Solve the simultaneous linear equations with complex coefficients. For example,
{52-(3+i)w= 7=f,,

2-z+2iw=-1+i
@ Write the polynomial p(z) as a product of linear factors. For example,
2% @® = (z+ia) (z— ia), 22 = 322+ z+ 5=(z+1)(z-2-D) (z—2+ 1)
@ Solve quadratic equation of the form p2*+qz+r1 =10 by completing squares, where p,
q,.r areTeal numbers and z a complex number. For example:
“Solve Z-2z45=0 = (z-1 = 2) (z=1+2)=0=>z=14+2i1-2i
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Unit'1 | Complex Numbers

1.1 Introduction

In our previous class we learnt that besides the real numbers, there are
other numbers called complex numbers. Such numbers play a very important role
in mathematics and other branchés of science. The use of complex numbers is
indispensable in Physics, Aeronautical and Electrical Engineering especially in
the analysis of Electric circuits.

1.1.1 Complex Numbers

In 1832, Gauss (1777-1855), a German mathematician gave the concept of
complex numbers as numbers of the form a+bi, where @ and b are real numbers.
The number a is called the real part of g+bi and the number b is called the
imaginary part of a+bi.

For example, the complex number —3+2/ has the real part ¢ = -3 and the
imaginary part b = 2.

Ina + bi,if b=0,thena + bi = a + 0i = a is a real number. Thus every
real number a can be written as a complex number by choosing b = 0. If a = 0
and b # 0, then a + bi = 0 + bi = bi is called a pure imaginary number.

For example, %r‘ and —i are pure imaginary numbers. Usually, the

complex number a + bi is denoted by z = a + bi

Accordingly, z,=a,+ b, i, z,= a, + b,i,...

The set of all complex numbers is denoted by C, thatis C= {a + bi:a, b € R},
Complex numbers may also be defined as ordered pairs of real

numbers. Thus a complex number z is an ordered pair (a, b) of real numbers

a and b, written as z =(qa, b). The first component a is called the real partof z

and the second component b is called the imaginary part of z denoted by

Re(z} and Im(z) respectively i.e. Re (z) = a and Im (z)=b.

The ordered pair (0,1) is called the imaginary unit and is denoted by i = (0,1).
The set of all ordered pairs of real numbers is the set of complex numbers

denoted by C, thatis C = {(a, ) : @, b are real numbers)

‘= IR x IR where IR is the set of real numbers.

I .E\‘Ialhcnmljé!w\'l




Unit I [ Cnmplc\ .\'umhérs

Since i = V-1, a simple consequence of the definition of i is that all
powers of i may be expressed in terms of & | and 1.

Forexample, i =i, #=-1, P#=47

P o= =i,

it = (#)? = 1 and if we continue

in this way to obtain higher powers of i/, we obtain the values /, i, -/ or —i.

Similarly, for negative powers, we have

— i — —
(M =sms ===

g _ 1 i
el i

[-zzl" :L = -]
i -1
l"'j:é = ‘11_ = --1— = .’ =1
i -t =i = -1
] 1
"—4=% =—5 = T = 1
@ (A

Example 1: Write the following complex

numbers in ordered pair form.

Note

In Example 1(c) we see that 0
can be ex gessed asa sum of a
real and an imaginary number and
hence is a complex number.
Such a complex number whose
real and imaginary parts are
zero, is called zero complex
number.

Similarly in Example 1(d), 1
can be expressed as a complex
number with real part 1 and
imaginary part 0. The complex
number 1 is called the unit

(a) 6 (b) 5i ()0 (d)! (e) 3-y=9  complex number.
Solution:

@ 6 = 6+0i =(60)  (b)5 = 0+5 =(0,5)

(¢ 0=0+0i = (00 (Ol =1+0i = (1,0

(¢) 3-v-9 =3-if9 =3-3i=(3,-3)

Example 2:  Find the value of
1-591 +’-59ﬂ +i538 +l586 +’-SB4 -1
i532 +1580 +i578 +i576 +i574
Solution: Given expression

|0 . -582 -580 +57. =576 .
e (il Y e W A Tl

574
)

= 582 | - ; 576 , ;574
ls +ISBO+1578+157 +1i

=(#) -1 = (-1) -1=-1-1=-2

1.1.2 Equality of Complex Numbers

—1=i"-1

Two complex numbers are said to be equal if and only if their corresponding
real parts and imaginary parts are equal. i.e. a+ib=c+id < a=candb=d
ie z,=z,= Re(z)) =Re(z,) and Im(z,} =Im(z,)

Mathematics-XI /
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Linit [ | Compley Nuinbers

Nlustration: Ifx+iy=3-4i,thenx=3andy= —4

1.1.3 Conjugate of a complex number

The conjugate of a complex number z = x + iy is denoted by 7, and
is defined as z = x—1iy

Iustration: () Letz=5-3i,then T =5+ 3¢
(ii)Let z=2=2+0i,then T=2-0i=2
(iii) Let z=3i=0 +3{, then T =0-3i=-3i
1.1.4 Basic algebraic operation on complex numbers
(i) Addition

For two complex numbers, Remember -}'_l
z,=a,+ ib, and z, =a,+ ib,, their sum is

" For any two real numbers a and b,

fined as:
defmerdas Jab=+fab is true only when at
z=z,+z,=(a+a,)+i(b +b,)} least one of a and b is either zero or

e ) ' __a; positive.
IMustration: If z,= 4 + 57 angd€gf'=2- 3, Ifboth a and b are positive real

then z,+ z, =4 +2)+(5-3)i=6+2i ‘numbers, then the calculation
Example 3: Add the complex numbers —a \/:3 =\/(—a)(—b) =ab

Ly=3+4iand ,=2-7i is wrong. The correct calculation is

Selution: Z;+2;= (3 +4i) +(2-7i) W
=(3+2)+(4-7)i=5-3i J__a\/_—b _(EJE)(EJE)

(ii) Subtraction = (:‘ \/Z)(: \/E )

be = ] 2 f
For two complex numbers z, = a, +ib, =i'(ﬁ£)=(—l)|m)=—ﬁ

and z, = a, + ib, , the subtraction of z, Thius! tha eaiotlatioh

from gz, is defined as: AT S = (_2)_(__3) =6

-2, =(t - @) +i(bi - by) is wrong, The correct result is

Mlustration: If z =1—-iand z,= 5+ 2}, ﬁﬁz(hﬁ)(h@)
then =2(V2 \B)=-V6

2= 2= (1=i) —(5+2i) = (1-i ) +(-5-2)
=(1-5) +i(~1-2) =— 4-3i

1 |
Mathematids-XI1
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Linit 1 | Compiex Numbers

Example 4: Let 2, =2 +4iand Z, = 1--3i. Compute Z,-32,
Solution: Putting values of z; and z, in the given expresslion,
2-3,=2+4)-3(1-3i)
=2+4+4i-3+49i=-1+13i
(iiif) Multiplication
Multiplication of two complex numbers
Zy=a+iband z, =c +id is defined as
22,=(a+ib)(c+id) = (ac—bd) + i(ad + bc)
Illustration: If 4 =4 43iand 2; =3— 2i, then
2%=({4+3)) (3— 2)
=[4x3-3 X(-2)] + [4x(-2)+3x3]=18+i
Example 5: Find the product of 2—3iand 7+5i.
Solution:  (2-3i)(7+5i)=2(7+5i)-3i(7+5i)
=14+10i - 21i-15/°
=14-11i -15(-1) (it =-1)
=14-11i+15 =29 -11i
(iv)  Division _
The division of one complex number by another complex number can not
be carried out, because the denominator consists of two independent terms. This

difficulty can be overcome by multiplying the numerator and denominator by the
conjugate of the complex number in the denominator. This process is called

rationalization.
We have % = a+bl. = a+b'_xc_d', (By rationalization)
2 c+di c+di c—di
_ (a+bi)(c—di) _ac—adi+bci—bdi’
(c+di)(c—di) - ¢t +d?
+bd) —(ad —bc)i I
NE R
¢ +d-
_ac+bd bc—adi Thus zZ, _a+bi _ac+bd bc—adi
ct+d?  F+dt 2 c+di A+d? A+d?

I —_———.—s



modulus of a complex number is the distance

Unit | | Complex Numbers

Ilustration: Solve (x +iy) (2-3i) =4 +i, where x and y are real.

Solution: We have, (x+iy) (2-3i) =4 +i
4+i  4+i 243 (B=3)+i(12+2) 5+14i_ 5 14,

= x+iy=

=3 9= 3 W82 130 2 -(3iY 13 13 13
xzi and y:I_4
13 13
. 34+2i. )
Example 6: Write = in the forma+bi .
-31
Solution:

342 3420 4+3i

4-3i 4-3i 4+3i
_(3+2i)(a+3i) _ 12+9i+8i+61  12+17i+6(-1)
T(4-3)(a+3)  16+12i-12i-97 T 16-9(-1)

6+17i 6 17 .
= + —_—

35 25 25
1.1.5 Absolute value or modulus of a complex number

(By rationalization)

(e it=-1)

Let z = (a,b) = a+bi be a complex number. Then absolute value

(or modulus) of z, denoted by Izl, is defined by |z|= Jaitet.
In the adjoining figure P represents a + bi. PM is a perpendicular drawn on oxX

Therefore OM =aand PM = b. In the .4
right angled-triangle OMP, we have
by Pythagoras theorem . Pla b)
2 ) 2 A !’f
0F| =|omM| +|PM| =a+5? |,
«. |0F| =<a'+b* =1zl Thus, the . >X
Figure 1.1

from the origin to the point representing the number.

IBETE
!‘-—h\thenmlifc:i.a}il
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Example 7:  Compute the absolute value of the given complex numbers:
(@ i (b) 3 (c) 2-5i
Solution: (a) Letz=iorz=0+/,
Then by definition

= JO +@)? =¥ =1
(b) Letz=30orz=3+0i. Then lzl = \f(3)2+(0)2 =W/or=13

(c) Letz = 2 - 5i. Then Iz} = /(2)} +(-5)° =V4+25= 29

(' For Your Information

The complex number Z = x + iy and its

conjugate Z=x— iy are respectively

represented by the points P(x, y) and ™0
Q(x, — y). Geometricaily, the point

Q(x, — y) is the mirror image of the point

P (x. ¥) on the x-axis and vice versa, A Qx—y)

=

P(x,y)

_EXERCISEL.1
1. Simplify the following "
2 1
Q) 8 +i® i) (=03 (iii) (=1) 2 Gv) (~1)

2.  Prove that ' 412 + 124i13=0
3.  Add the following complex numbers

@) 301420, =2(1-3) (i) %—%i, %—%i iy (v2:1), (1.v2)
4.  Subtract the second complex number from first

()(@0)(2-b) ) C3,3)0G2) i) 33547, 3+2J7i
5. Multiply the following complex numbers

(i) 8i + 11, —7+5i Gi)3i2(1=) @) V2+v3i, 242-3i

6. Perform the indicated division and write the answer in the form a+bi

o A+i . 1 1 . . 6+i
Oans Ui W= (i

Mathematics-X|




Unit 1 | Complex Numbers

7. KXz =1+2iand z; =2+3i, evaluate

W |za+z) i) |2z (i) |z
8.  Express the following in the standard form a + ib :
1-2i 4= N S

(i) I IETReS (11) IJ—:_E (1ii) T

(1+2i)(2-i)
11. Letz =2-i,z,=—- 2+i find

() Re [ﬁ;:a J (i) Im (1__)
z, iz

1.2 Properties of complex numbers

1.2.1 Properties of complex numbers with respect to addition and multiplication
Like real numbers, properties of addition and multiplication also hold in complex
numbers.

i) Properties of Addition

A-1  Addition is commutative i.c. 7, +z,=2,+2

3
_ G : _ I
9.  Find the conjugate of (3—%1-)—(24-—30 10. Evaluate [,’!3 .;.(1) ]
i

Ifz; = a + biand z, = ¢ + di, then

Z; + 2, =(a+bi) + (c+di)
= (a+c) + (b+d)i
= (c+a) + (d+b) i (by commutative property for addition in IR)
= (c+di) + (a+bi) = z, + g,

Thus z +z,=2,+2

Example 8: Ifz =1+3iandz, =3 -5i, then z, +z,=2,+7
Solution: % +2, = (I +3i) + (3 -5i) b ;
=(1+3)+(3-5)i=4-2i
and z,+z, =(3~5i)+ (1 +3i) i

=(3+1)+(-5+3)i=4d-2{
Hence L +2,=2,+2

IA Ei'ﬁh-.:nl'm-:':% Nl
|



Linit T | Complex Numbers

A-2 Addition is associative Le. z, +(z,+7;) = (z;+3) + 4,
If z, =a+bi, g, =c+diand z, = ¢ + fi, then
Z +(z,+z) = (a+bi) + [(c+di) + (e+fi)]
= (a+bi) + [(c+e) + (d+f)i]
= a+(ct+e) + [b+ (d + f]i
= (a+c) + e + [(b+d) +f]i (by associative property for addition in )
= [(a+c) + (b+d)i] tetfi
= [(a+bi) + (c+di)] +etfi
=y+3) + %
Thus Z +(5+z) = (4 +5) + 3
Example 9: If z, = 1+ 2i,z,=-2+ Jiand z; = =3 =54,
then z, +(3, +,)=(3, + ) + %
Solution: Z+(+%5) = (14 2i)+ [(2+3i) + (3-50)]
=(1+2i) + [(-2-3) + (3-5)i] = (1+2i) + (=5=2i)
=(1-5)+(22)i =—4+0i
(q+§)+§==HHQU+kQ+ﬁH+064U
= [(1-2) + (2+3)i] + (=3-5i) = (=1+5i) + (3-5i)
=(-1-3)+ (5-5)i =—4 + 0i
Hence gz, +(z,+2;)=(4+2%,)+
(ii) Properties of Multiplication
M-1 Multiplication is commutative i.e. z,2,= 2, 2,
If z =a+bi and z, =c+di,thenz,zz=(a+bi). (c + di)
= (ac - bd) +(ad + bc) i (by definition of multiplication of complex numbers)
and  z,z, = (c + di) (a + bi) =(ca—db) + (cb + da)i
= (ac - bd) + (ad + bcji (by commutative properties of
multiplication and addition of real numbers). Thus, %z, =23
Example 10: Hq=2—ﬁmﬂ§=—HQmeqg?§§

Solution: 22, = (2 = 3i) (— 1+ 2i) =2(~1+ 2i) Bi(=1+2i)
=2 +4i+3i-68==2+7i+6 (v =~
=4+7i

and 2,2, = (— 1+ 2i)(2 -3i) = =12 = 3i) + 2i(2 - 3i)
= 2 +3i+4i—6F =-2+7i+6 (v iP£=-1)
=4+7i

Hence  %,2,=%3
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M-2 Multiplication is associative i.e. (2 23)=(z, 3,12,
Ifz, =a+biz =c+diand z, = e + fi, then
Z,(z; ;)= (a + bi) {(c + di) (e + fi)] = (a + bi) {(ce —df) + (cf + de)i}
= {a (ce —df) —b (cf + de)] + [a(cf + de) + bfce ~df)] i
and (7, 2,)z; = [(a + bi)(c + di)] (e + fi) = [(ac —bd) + {ad + bc)if (e + fi)
= [(ac —bd)e H{ad + be)f] + [(ac -bd)f + (ad + bc)e]i
= [(ace —adf—(bde + bcf)] + [(acf + ade) + (bce — bdf)}i
= [a(ce —df) —b(cf + de)] +[a(cf + de)+b(ce ~df)]i
Thus, (32) = (35) 5
Example 1t: Ifz=1-/ z,=—1+2/ and z=2-3i, then z(3,z) = (3,3,)z;
Solution: We have
Z(5z)=(1=i)f( =1+ 2i) (2 -30)] = (1-i) [-W2 =3i) + 2i(2 - 3i)]
=(1-i)(2+3i+4i—6°)=(1-i)( 2+ 7i + 6)
=(1—-i)(4+7i)=1(4 + 7i) =i(4 + 7i)
=4+ 7i—4i-7=4+3i+7=114+3i
and (Z5)z;  =[1-i)(~1+2i)](2=3i) = [1{—1+ 2i) —(—1+ 2i)] (2 - 3i)
= (=142 +i-22)(2=3i) =(-1+3i+2)(2-3i)
=(1+3i)(2-3i) =1(2~30)+3i(2 -3i)
=2-3i+6i-9% =2+314+9 = 1| +3i
Hence 2(%,%) = (7,2,)z
(i)  Multiplication-Addition Property (The Distributive Property)
This property is more explicitly stated as follows:
M-A. Multiplication is distributive over addition i.e. Z (5+3) = 55,+z7 3
Kz =a+biandz =c+diandz = e +fi, then
7 (%+2;) = (a + bi) [(c + di) + (e + fi)]
= (a +bi) [(c + e) + (d + fli]
= [a(c + e) —=b(d + f)] + [a(d + ) + b(c + ¢)] i
and 4,5,+3,2; = (a + bi)(c + di) + (a + bi)(e + fi)
= [(ac —bd) + (ad + bc)i] + [(ae —bf) + (af + be)i]
= f(ac + ae) + (—bd - bf)] + [(ad + af)i +(bc + be)i]
= fa(c +e) b (d+f)] + [ald+fl+b(c+e)fi
Thus, 7 (2, + 1) = 5,2, + 2%

Majhematics-X1 /
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Example 12: If 5 =—1+2z = 3+4i and z; = =2 + 5i, then
3 +3)=795+235

Solution: We have s
Z(z+z) = (—1+2i) [(3 + 4i) + (=2 + 5i)] (—J@

=(—1+2i)[3+4i-2+5i] According to the
= (=14 2i)(1+9i)= —1-9i + 2i +18 4 ;?g‘p’;‘r‘t‘;a;(‘)‘;e
=—1-7i-18=-19-7i (+ #=-1) multplication
and zz, +,2, =(—1+2i)(3+4i)+(-1+2i) (-2 +5)) iy = yi. Hence we |
=3 —di6i+ 82 -5i—4i+ 107 SRS
\
\
|

z=x+ Iy instead
=—1-7i-8-10=-19-7i of z=x+yi

Hence 7 (+%) = 55 + 4%
1.2.2 Additive identity and multiplicative identity of complex numbers

A complex number ¢ + di is called the additive identity of the complex number

a+ biif (a + bi} + (c +di)=(c + di)+ (a + bi)=a + bi

Let a + bi be any complex number and ¢ + di = 0 + 0i be the zero

complex number. Then

(a + bi) + (0 + 0i) = (a + 0) + (b + 0)i (by definition of addition)

=a+ bi
Similarly (0 + 0i) + (a + bi) = a + bi
Thus the additive identity in C is the zero complex numberie. 0 + 0i

A complex number ¢ + di is called the multiplicative identity of the complex

number a + bi if (a + bi) (c + di) = (c + di) (a + bi) = a + bi

Let @ + bi be any complex number and ¢ + di = I + Oi be the unit

complex number. Then .

(a + bi) (1 + 0i) =(a-1-b-0) +(a-0+b-1)i  (by definition of multiplication of

E a+bi complex numbers)

Similarly (I +0i)(a+bi)=a+bi

Thus the multiplicative identity in C is the unit complex number  + 0i.

1.2.3 Additive inverse and multiplicative inverse of complex numbers
A complex number ¢ + di is called the additive inverse of the complex

number a + bi if (@ + bi) + (c + di) = 0 + 0i i.e. the additive identity.
Wehave (@ + bi) + (c+di)=0+0i =(a+c)+(b+d)i=0+0i
= a+c=0and b+d=0 = ¢=-a and d=-b ‘
so that ¢ + di = —a —bi, Thus the additive inverse of a + bi is —a —bi.

Mathcmatics-XI



init 1 ! Comples Numbers

Example 13: Find additive inverse of 5 — 3i
Solution:

Let z=5-3i
w=z==(5=30)==5+3i
Thus the additive inverse of 5 —3i is —5 + 3i.

Multiplicative inverse A complex number ¢ + di is called the multiplicative
inverse of the complex number a + bi if (a + bi) (c + di} = 1+0i i.e, the
multiplicative identity.

Wehave(a+ bi)(c+di)=1+0i = (ac —bd) + (ad + bc)i=1+ 0i

= ac-bd=1 ®
and ad+bc=0 (ii) From  (ii}, we have
ad=—-bc or d= —%5 (iii) Putting the value of d in (i), we get

ac +b (2?.): I = a'ch = ﬁDid You Know ﬁﬁgj

a
(iv) The complex numbers

= (+b)c=za = ¢ =

a’ +b possess all the properties
Putting the value of ¢ in (iii), we get that real numbers possess
except for the order

b-a b : ; -
=—-——— = d=—-——— (V) relation, that is, we can

ala” +b7) a +b .

not say that one complex
From (iv) and (v), we have number is greater than
is ed A the other complex number.

A +bat+b :
Thus the multiplicative inverse of a + bi is
a )
a’+b* a’+b? :
Example 14: Find mulitiplicative inverse of -2 - 3i
Solution: letz=-2-3i Herea=2,b=-3
. i a b )
e 2= —

Laz +b" at+b

((,z)zf(_3y N =) -5

A‘)
Thus — 1—5 + 1—351 is the multiplicative inverse of —2 - 3i.

INMhthematics-X1
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1.2.4 Some properties of the conjugate and modulus of complex numbers

In the following theorem we prove some properties pertaining to
conjugation and modulus of complex numbers.
Theorem: Forall z, z,, 2, in C

@lzl=lz=1Z71=1-71 (b) T =z (€) 27 =1z
-, = —_ == 4 2
) z+z, =7 + T, () z,z, = 47, O =z 2 3/

Proof (a) Letz=a+bi. Then —z=—-a—bi,7 =a—biand -7 =-a+bi

Therefore by definition Izl =va*+b° (i)
-zl = a)’+(b)?® =a’ +b’ (i)
171 = (@%b =va+b (i)

-7l = \/(—a)’+(b)2 =Ja® + b (iv)

Equation (i), (ii), (iii) and (iv) yield that

lzl=[-zi=1ZI=1-ZI
(b) Let z=a+ bi,then 7 =a-bi, and so
Z =a+bi=z

Thus =1
{c) Let z=a+bi. ThenZ =a-bi
Therefore 27 = (a + bi} (a — bi)

= a* —abi + bai —b*?

=a? —(-1)p* (v if=-)

=da’ + b

=1z (" Izl=\/m)

Thus zz=1z1?

(d) Letz, =a+bi and z,=c+di
Then Z, =a-bi, 7, =c¢—diand
z,+zz=(a+bi)+(c+di)

=fa+c)+b+d}i

Therefore 3+z, =(@a+c)-(b+d)i
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~y

=(a-bi)+({c—-di)=3z, +7,

Thus z,+z, =z + 2,
(e) Letz, =a+bi and z, =c +di
Then %7 =(a+bi)(c+di)
= (ac—bd)+(ad + bc)i
= {ac —bd) —(ad + bc} i (i)
and 77, =(a+bi) (c+di) = (a—bi)(c —di)
= (ac —bd) + (—ad —bc) i :
=(ac ~-bd) —(ad + bc) i (ii)
Thus from equations (i) and (ii),we have

24 T4 4

() Letz,; =a+biandz, = ¢ +di

zy _a+bi _a+bhi % c—di

Then z =
c+di  c+di c-di

(by rationalization)

o]

(ac+bd)+(bc—ad]f _ac+bd bc—-adi
c2+d? c+d? ct+d?

"("ZI_ ac+bd+bc-—aa",
4 ct+d?  ct+d?

ac+bd bc—ad
ct+d* _cz+d21

@

a+hi _a-bi _a—bi _cdi ;..
= - = Eh.’f'l. i b'_ x £7% (by rationalization)
c+di c—di c—di c+di

(ac+bd)—(bc-ad)i ac+bd _bc-ad
ct +d’ ct+d®  F+d?

(ii)

Thus from equations (i) and (ii), we have

.:'."|5~I

f—
[

1|l

I -.';-'l.mhemalilksl.’{i
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1.2.5. Real and imaginary parts of the complex number of the form

. . (Nt hY .
(i) (x + iy)! (ii) [ - ) X, +iy, #0 wheren=+7and £2

X, +iy,
i Real and imaginary parts of (x +iy)” wheren = + I and +2
whenn = 1, (x + iy)" reduces to x + iy
Therefore,  real part =x and imaginary part =y
When 1 =-1, (x + iy)" reduces to (x + iy)™

We have, (x + iy)” = - - = I — X x—t.y (by rationalization)
(x+iy) (x+iy}  x-iy
_x-y o x —i y
. x2+yz - x2+y2 x2+y2
x —
Therefor real part = and imagi art =
erefore p iy imaginary p o
When n =2 (x + iy)" reduces to (x + iyp,
we have (x + iy)? =x2 + 2ixy + %Y
=xZ + 2ixy =y . (v i¥=-l)
= (¥ =y’) + 2ixy

Therefore real part = x> —y? and imaginary part = 2xy

When n = —2,(x + iy)" reduces to (x + iy)™

We have, (x + iy)~ =

(x+ iy)2
_ 1 ’ (Jc—iy)2 _ x2—y2=2ixy
(Jc+iy)2 (x—iy)2 ' (Jt-l-iy)z(.vc—iy)2
_ xz_yz_zl-‘xy _ xz_yz 2.x:y

2 - 2 -l
F+y (Pay) @)

(x3+y2)2

=2y
(x*+y*)’

Therefore real part = and imaginary part =
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Example 15: Find the real and imaginary parts of the following complex numbers.
(i) 2-3i (i) (5-3)"" (i) (3+ip Giv) (1 +2i)
Solution:

(i) Let z = 2 —3i Therefore real part of z = 2 and imaginary part of z = -3
(i) Letz=(5-3i)". Herex=5andy= -3

Therefore, real part of z = — L - = — 2 = e
x+y: (54 (=37 5 34
=Y =(13) i 8

and imaginary part of z = - = — = =
B 4yt () (=37 2549 34

(iii) Letz=(3+if . Herex=3andy=1/

Therefore, real partof z = x> 5% = (3)? — (1) =9-1 =8
imaginary partof z =2xy=2(3)(1)=6

(ivi Letz=(1+2i)? Herex=1 andy=2

el F] p] ) 2 r -__
Therefore, real partof z = 1, ): ~ & (1), (22 = 1——7 o =3
(" ¥y (1Y + @°) (37} [ 25

—2xy 2002 (A4

imaginary partof z = —; I
e T EE T e@a  6F 25

ii. Real and imaginary parts of (—MJ where n = 21 and +2

X241y,

' B A X, +Iy
Whenn=1, (M} reducesto —: _)' . Wehave,

X, +iy, X+

x, iy, X +iy, i X, =iy,
Xy, X +iy, X, —iy,
X% =Y, TG LYY,  NX +i (Y =X Y, )+ NV

(By rationalization)

= = 2 (=)
x; —i%y; X+,
=(x1xz+ Wyt (nx— Xy,) EnLnt 5 i e B
XY, o+ n G+
X%+ Y, e X, =X,
Therefore, real part = '—-—‘l;——y“— and imaginary part = it ey )
XtV X+,
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n -~
. +i
When n = -1, M reduces to ﬁ-—-ﬁ-
X Ty, X, Ty

-
j  + ] ] + j - . . .
We have [x, +{y ! J - l.y' == l_yz x 2 z-y, (by rationalization)
X, iy, X ) X+, X~
+ e} Y. A X . .
=5 x; y{ N — b (by routine calculation)
X+ A+,
X, + e} . . L X = X
Therefore,  real part = % and imaginary part = -%
Xty Xty
n 2
. i
When n =2, M reduces to M We have,
X, +1, X+, ) '

. 2 . 2 T iy 32
(x,ﬂy,) _ntiy) ()T ( ~1,) (By rationalization)

X+ ) (i) () (i)
_lx =y )+ 2ixy)] (% = y2)=2i%,3,]

A

{x, ’Hyz)Z (x, ~iy;)

= [(xlz._ylz) (x22 _y§)+4x|xzy1.1’z 1+2i [x 3 (-"722 —J’22) —X), (x|2 ".VII)]

2
(3 +7)
) = 2 2
o R X; —y;)+4xx
Therefore, real part = @) (x 3’21)2 1%2 Y1 Y2
(x5 +53)

Xy, (X2 = y2)=x,y, (x =¥})

imaginary part = 2

(£ +3)
R .oY2
When n = -2, Rl reduces to Xty
x, +iy, x, +iy,
-2 . »
We have ( X, +iy, ) - (x, ‘Hyz)z _ (X, +’,V2)2 . (x, _IJ':)Z
Xy +iy2 (Ii +l'_)’,)2 (xj +iy})2 (xj _iy;)z

Nathematics-X1
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= [(x'i "yzz) (xl2 _y|2)+4x1x2y|y2 1+2i [xzyz(xlz _J’|2 )= (xi —J’-j)]

Chn JLERY
(xl +y[)
At A, T

3 o e +4xx,

Therefore, real part = (x; — ;) (ltz Yi 2) - XYY,
. (xl +y;)
X,Y,(% =Y} ) =% (% =33)
imaginary part = 2 272170 11 ;: 2iT Vs
(xf"')’;)

EXERCISE 'I 2

e e

1. If z; = 2 + i and z, = 1—i, then verify commutative property w.r.t. addition
and multiplication.

2. z; = =140, z; = 3-2i and z; =2 +3i, verify associative property w.r.L.
addition and multiplication.

38z, =V3+2i , 2= V2 -3i and =2 =2i, verify distributive property of
multiplication over addition. !

4. Find the additive and multiplicative inverses of the foilowmg complex numbers
(i) 5+2i (ii) (7,-9)

5. (i) Letz;=2+4iandzy=1-3i Verifythat Z'+z,=2+2,

(i) Letz, =2+3iandz,=2-3i. Verifythat z3z, =z7,

(ili) 1f 7, = —a.=3bi, 2, = 2a - 3bi, then verify that (L] = —%—
6. Show.that for all complex numbers z; and z, R
(1) 1 z,z,1 = 1 g1z, (i1) TI =H where z, # 0.
7. Separate into real and imaginary_parts
M 2 (i) Qﬁ%?i (it J:;z

_ - 3+4i)7 (2250
(iv) (2a -bi)~ M 133 (v1) 2+3i
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8. Show that
" (i) z+Z=2Re(z) - (i) z—7 =2iIm(z)
(i) 22 =[Re@)F +[Im(2)} (iv) z=T7 = z isreal
(v) Z=-z ifand only if z is pure imaginary
9. Ifz=3+2j,then verify that (i}— |z| < Re <|z| (i1} —|z| < Im <|z|

1.3  Solution of equations
In this section we shall find solution of different equations in complex

variables either with real or complex coefficients.
1.3.1 Solution of simultaneous linear equations with complex coefficients
Consider the following equation
_ pz+gw=r (1
where p,gq and r are complex numbers. The equation (1) is called a lincar
equation ir two complex variables (or unknown) z and w.

Pzt g w=n (7
|
P2+t g W=h \
These two equations together form a system of linear equations in two variables z

and w.The linear equations in two variables are also called simultaneous

linear equations.

For example 5z ~(3+i)w=7~i :
(2 ~i)z+2iw= —1+i e

is a system of linear equations with complex coefficients.

"Inconsistent” "Consistent"

"“Independent" "Dependent

¥

] Y

No Solution One Solution ©0 Solutions
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A solution of a system in two variables z and w is an ordered pair (z,w)
such that both the equations in the syslem'are satisfied. For example consider
system (3). The ordered pair (z,w) where z =/+i and w = 2i is a solution of (3)
because if we replace z by /+i and w by 2/, then both the equations are satisfied.
The process of finding all solutions of the system of eguations is called solving
the system.

Here we shall find solution of a system of two equations with complex co-
efficient in two variables z and w. The simple rule for solving such system of
equations is the “method of elimination and substitution”.

Step-1 If necessary multiply each equation by a constant so that the co-efficient
of one variable in each equation is the same.
Step—2 Add or subtract the resulting equations to eliminate one variable, thus
getting an eqguation in one variable.
Step-3 Solve the equation in one variable obtained in Sicp-2.
Step-4 Substitute the known value of one variable in either of the original
equations in step-1 and solve for the other variable.
Step—5 Writing together the corresponding values of the variables in the form of
ordered pairs gives solution of the system.
Example 16: Solve the simultaneous linear equations with complex coefficients.
Sz=(3+ijpw=7—1i
(2—iz+2iw=—1+1i
Solution: Giventhat  Sz-(3+ijw=7-i ‘Al |6
(2—i)z+2iw=—-1+1i (2)
Multiplying equation (1) by (2 — i) we have
52-i)z—(3+i2-Dw=(7-i)}2-1)
= 5(2-i)z—(6-3i4+2i—iF)w=14-T7i-2i +F
= 52-pz-(6-i+Dw=14-9i-1(=i=-1)

= S2-i)z—-(7-ijw=13-9i (3)
Multiplying equation (2) by 5, we have :

5(2-i)z + 10iw =5 + 5i {(4)
Subtracting equation (3) from equation (1), we have

5(2 - i)z+10iw = -5+5i

+5(2 —i)z—(7—ijw=+13-9i
- + - 4

10iw + (7—i)w =18 + 14i

] if . i &
Mathematics-N1 / »1 )
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o (74 Ow=-18+14i = w=—orld
7+9i
— 4‘ _ -
= "= o +1' - % z 9-1 (By Rationalization)
7+9 - 7-9i
_ o260,
130

Substituting the value of w in (|}, we have

Se—(3+i)2i)=7—-i = Sz—(6i+2)=7-i
= 5:-(6i=2)=7-1i = Sz=7-i+6i-2
= - Sz=35+5i = z=£z—5£=1+i

Thus (z,w) where z = I + i and w = 2i is the solution of the simultaneous linear

equations.

1.3.2 Expression of the polynomial P(z) as a product of linear factors

Recall that an expression of the form

P(x) = a,X"+a, ;x" '+ ... +axtay, a, 20
where n is a positive integer or zero and the coefficients a,,a, ,.....a and a, are
constants that are either to be real or complex numbers, is a polynomial of degree n.

For example, 2x + 3, 3x% + 2x + I and 5x° — 6x* + 5x — 1 are polynomials
of degree 1, 2 and 3 respectively.

Here we are concerned with finding the linear factors of the following two
types of polynomials.

(i)  P(z)=7'+d’, whereais a real number.

(ii) P(z)= a7’ +b +cz+d where a, b, ¢ and d are real numbers.

In factorizing polynomials of type (i) we simply use the fact that i = —1 so
that to find linear factors.

For example, P(z) = 2 + @’ = 2 — i’a’ = (z + ia)(z — ia). However, in
factorizing polynomials of type (ii), we use the factor theorem which has already
been proved in the previous class and stated below.

The factor theorem: Let P(x) be any polynomial. Then x —a is a factor of P(x)if
and only if P(a) =0

The method for factorizing the polynomials of type (ii) into linear factors
is explained through the following example.
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Example 17: Factorize the polynomial P(z) = ' + 52" + 19z — 25 into linear
factors.

Solution: In factorizing the given polynomial P(z) into linear factors, we use

the factor theorem. To do so, we note that z = 1 is a root of P(z), since
P(1)=(1F+5(1F+191})-25=1+5+19-25=0
By factor theorem z - I is a factor of P(z). We therefore arrange the terms in such
a way that we can find a common factor z — 1 as follows:
Pz) =2+ 57+ 192-25
=(7-1) +(57+ 192-24)
=(z—I)(Z+z+ 1)+ (57-52+242-24) va’'-b =(a-b)a’+ ab + V')
= (2= 1) (£+ 2 +1)+(52~ 52) + (242 - 24)
=(z—I)(F+z+ 1)+ 5z(z— 1)+24 (z— 1)
=(z— 1) [(Z+z+1)+ 52+ 24)] = (z— 1)(Z + 62 + 25)
=(z—1)(+6c+9+16)=(z—1) [(Z+ 62+ 9) + 16]
=(z-1) [(Z + 6z + 9) (—16)]
= (z— Df(z + 3/ - (4i] (i ==1)
=(z-1}{(z+ 3) +4i][(z+ 3)~4i] (. &-b’=(a + b)(a-b))
=(z—-1)(z + 3+ 4ilf{z + 3 - 4i)
1.3.3 Quadratic equation of the form pz' + gz+r =b
Consider the quadratic equation of the form
pr+gz+r=0 (1)
where p,g,r are real numbers p # 0 and z is a complex variable.
Weseethat 7 —z+3=0,37-4z+2=0,52+62=0,72-3=0,2" =37~ 1
and z° = 0 are all examples of quadratic equation in the variable z. Equation (1) is
called the standard form of the quadratic equation.

Solution of quadratic equations

Recall that all those values of z for which the given equation is true are
called solutions or roots of the equation, and the set of all solutions is called
solution set.

il 1R
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For example, 2 + 4 = 0 or Z — (2i)° = O is true only for z = 2 or z = -2, hence
z = 2i and z = —2i are the solutions or roots of the given quadratic equation and

{2i, =2i} is the solution set.
To find the solutions of equations of the form (1), we use a method known
as “ completing the square” which is described as follows:

Step-1 Write the quadratic equation in its standard form.
Step—2 Divide both sides of the equation by the coefficient of 2’ if it is other than 1.

Step-3 Shift the constant term to the right hand side of the equation.

Step-4 Add a number which is the square of half of the coefficient of z to both
sides of the equation. ©
Step—5. Write the left hand side of the equation as a perfect square and simplify

the right hand side.
Step-6 Take square root of both sides of the equation and solve the resulting

equation to find the solutions of the equation.
The method is explained in the following example.

Example 18: Solve the quadratic equation 7’ + 6z + 25 =0

Solution: We have — )
Z+6z+25=0 (Step—1) - u‘)

-  F4+6z=-25 (Step—2 and Step-3) The coefficient
—  Z4+6z+9=-25+9 (Siep4) of z* must not
- (z+3) =-16 (Step-5) gfh:':r)ise it

= (z+3F =(4i) becomes linear
= z+3=x2i (Step-6)

= z==-3+2iorz=-3-2i

Thus the solutions of given equation are -3 + 2i, -3 — 2i and solution set is
(-3 + 2i, -3 -2i}

Example 19: Solve the equationz' +z +1=0

Solution: According to the quadratic formula, the answer is

—1+F -4 V3

_TIEVD A i
¢ 2 2
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EXERCISE 1.3 |

1. Solve the simultaneous linear equations with complex coefficients.
(i) z—4w =3i (i) z+w =30 (iii)) 3z + Q+)w=11 -1
2z2+3w=11-35i 224 3w=2 (2-Dz-w=-1+]
2. Factorize the polynomials Pz} into linear factors.
(i) P(2)=2"+6z+20 (ii) P(z)=32*+7
(il) P(z)=2"+ 4 (iv)P(z)=2'-2+2-2
3.  Show thateach z;=-1 +i and z,= -1 - i satisfies the equation 242z +2=0
4. Determine whether 1 + 2i is a solution of =2z +5=0
5.  Find all solutions to the following equations

() Z2+z+3=0 i}z -1 =z (iii) 22 -2z+i=0 (iv)Z2+4 =0
6. Find the solutions to the following eguations _
i 2+22+1=0 (i) 22 =-8 (ip€z-1Y=-1 (v =1

REVIEW EXERCISE]T

1. Choose the correct option.

o (Z5)

(a) i (b)2i fcrl=1i (d) 1=2i
(i) | Divideper-2t @3
4-3i
{illl—l-*Ei (b) E_E,- (c) .‘34.35,- [d12—6+§i
254N 4 3 25 25 7 7

(iii) ;%7 +T!_5- when simplified has the value

(a) O (b) 2i (c1—2i (d)2
60 S R AL A 1At +i™is
(2) Positive (b) negative (c10 () cannot be determined
(v) Ifz=x +iyand 5_5' = 1 then z lies on
2+ 5i
(a) X-axis (b) Y-axis (ciliney=5  (d)None of these

(vi) The multiplicative inverse of z=3 — 24, is

() %(3+2i) b)56+2) | ©(3-2) @ 1G-20)

T A . .
| Mathematics-X1 £#2%




(vii) If (x+iy)(2—3i)=4+1i,then

(a) x=—14/13, y=5/13 (b)x= 5/13,y=14/13
(c) x=14/13,y=5/13 (d)x= 5/13; y = —14/13
Show that P + "' +i™?+i™ =0,Vn€EN

Express the following complex numbers in the form x -+ Jy.

() (1430 + (5+70) (i) (1430 = 5+ 7i) (i) (143)(5+70) (iv) ;:?Ii
If2|=2—i,22=1+i, find ZI+z:+l o
z,—zz+l

g 14i 1-i

Find the modulus of ————— -
1—i 1+i

Find the conjugate of :

ind the conjugate of =

3i+2

Find the multiplicative inverse of z = 5

3
Solve the quadratic equation z+§ =2.

Complex Numbers
a+bi

Imaginary
Numbers
a+blb#0

Pure Imaginary
Numbers
bi,a=0

f\'lmhcmnlics-X[@
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AXxG + BxH
=|cxG + D&H
EXG + FH

Recall lhe conccpt of
s amatrix and its notation,

« order of a matrix,
» Equality of two matrices.

@ | Define row matrix, column matrix, sguare matrix, rectangular matrix, zero/null
matrix, identity matrix, scalar matrix, diagonal matrix, upper and lower triangular
matrix, transpose of a matrix, symmetric matrix and skew-symmetric matrix.

® Carryout scalar multiplication, addition/subtraction of matrices, multiplication
of matrices with real and complex entries.

& Show that commutatwe property

« holds under addition.

» does not hold urder multiptication, in general.

Verify that (AB) = BYA’

Describe determinant of a square matrix, minor and cofactor of an element

of a matrix.

Evaluate determinant of a square matrix using cofactors.

Define singular and non-singular matrices.

Know the adjoint of a square matrix.

Use adjoint method to calculate inverse of a square matrix.

Verify the result (AB) ' =B~A~".

State and prove the properties of determinants,

Evaluate the determinant without expansion(1.e.using properties of determinants).

Know the row and column operations on matrices.

Define echelon and reduced echelon form of a matrix.

Reduce a matrix to its echelon and reduced echelon form.

Recognize the rank of a matrix.

Use row operations to find the inverse and the rank of a matrix.

Dmtlngulsh between homogeneous and non-homogeneous linear equations

in 2 and 3 unknowns. e :

# Solve a system of three homogeneous linear-equations in three unknowns.

nNnHZmMocC-Hwm

M= OoONHCO OAZ—Z 33> M
®

w

Mathematics-XI1
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® Define a consistent and inconsistent system of linear equations and
demonstrate through examples.

® Solve a system of 3 by 3 non-homogeneous linear equations using:
» matrix inversion method,

Gauss elimination method {echelon form),

Gauss-Jordan method (reduced echelon form),

Cramer's rule.

2.1  Introduction

The concept of matrices is a highly useful tool which is not only used in
mathematics but also in all branches of science, engineering and the business
world. Now-a-days matrices and matrix methods have widespread applications in
the operation of high speed computers.
2.1.1 (a) Concept of a matrix and its notation
In previous class we have taken a simple example for the concept of a matrix.
Here we take a bit more tricky example.
Suppose three colleges A,B,C take part in an inter-colleges debate competition,
where any participant can speak in either of the four languages English, Urdu,
Pashto or Hindko. College A consists of 3 participants in English, 2 in Urdy, 3 in
Pashto and I in Hindko, College B consists of 2 participants in English, 3 in
Urdu, 1 in Pashto and 2 in Hindko, College C consists of 4 participants in
English, 2 in Urdy, 2 in Pashto and 1 in Hindko.
The information given in the above example, can be put in a compact way ina
tabular form as follows:

A 3 2 3 ]
B 2 3 I 2
C 4 2 2 I

Now we write the data given in the above arrangement in a capital or small
brackets without any top or left heading as shown. .

3 2 3 | 3 2 3 |
2 3 1 2 or 2 3 1 2
4 2 2 | 4 2 2 |

Mathematics-X1
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atrices inan

il ntars
I J'-I'.. 'l
i

This array of numbers gives all the inform
Thus a matrix is a rectangular array of num
or parenthesis. Unless otherwise specified, al

For example,
— (3 2 3 1
ro_vg;* 2 3 1 _2 Ty
— |4 2 2 1
T T ) 15
columns

ation needed which we call a matrix.
bers enclosed in large square brackets

I numbers in a matrix array will be real.

= W3 2 3 1
rows -3 1 2
—3
- 4 2 2 1
T I T T

columny

represents matrix. However, throughout we will use square brackets to denote

matrices.

In the above matrix the horizontal lines of numbers are called rows and
the vertical lines of numbers are called columns. Each number in the array is

called an element or an entry of the matrix.
The above matrix has three rows and

four columns.

We are now ready to give the general definition of a matrix as follows:

A matrix is a rectangular array of mn elements a; i = 1,2,3,...,m
j=1,2,...,n arranged in m rows and n columns. In writing down matrices, it is
usual to denote the matrix by a capital single letter A (say) such that

a, dp
a
21
A=
a Ll

(b} Order of a matrix

e

a

e lbiy

a,

n

The order of a matrix is given by the number of rows followed by the number of
columns, if the matrix A has m rows and n columns, and so is said to be of order

m X n (read as m by n matrix).
For simplicity and to convey the idea, the
otherwise specified.

In the matrix A, the ith row and the jth column are represented as follows:

matrix A is an m X n matrix, unless




A=

ith row = ( )
a, Ay .| O] - G,

g 1) B 4

The elements of the ith row of A are a1, aj2,....,jj......ain and the elements
of the jth column of A are a); ,a...,jj,.-..am;. We see that the element aj; occurs in
the ith row and jth column of A. The elements in the ith row and jth column will

usually be referred to as the (i,j)th element because of

the two subscripts i and j.

We' may also write the matrix A as
A=[ai] e OF A=[ay]; i=1,2,...,m; j=1,2,...,n,
where a;; is the (i,j)th elements of A.
(¢)  Equality of two matrices

Two matrices A=[a;] and B = [bjj] of the
same order are said to be equal when their
corresponding elements are equal i.e. a; = b;j forall i
and jwhere i=1,2,....m; j=1,2,....n
For example, if

A=[p q] and B=[p q] then A = B.
rs rs

2.1.2 Types of Matrices
{n) Row Matrix or Row Vector

Did You Know ?

A matrix is merely a
table of numbers. Apart

- from being a convenient

way of recording certain

- types of numerical values,

it has no particuiar vatue
in itself.

A matrix with only one row i.e. a Ixn matrix of the form [a, a,,... a,,]is

called row matrix or a row vector. For example, [-1
is a row matrix having three columns.

(b) Column matrix or Column vector
A matrix with only one column i.e. an m x | matrix of the form | : | is

o _3) MM N




called a column matrix or a column vector.

a
2 |k : :

For example, is a column matrix having four rows,
c

d

{c) Square matrix
If the number of rows and columns in a matrix are equal i.e. if m=n, then
the matrix of order mxn is called a square matrix of order n or m.

For example, A=

1
aeyY b
is a square matrix of order n and [a], [ a’} and | 4 1 5| are
c
3 6 2
square matrices of order 1, 2 and 3 respectively.
The diagonal of the square matrix A containing the elements a,,, a,,..., 8 iS

called the principal diagonal of A. It is also termed as the leading diagonal or
main diagonat of the matrix A.

{d) Rectangular matrix
If the number of rows and columns in a matrix A are not equal, i.e. if
m+# n, the matrix is called a rectangular matrix of order m X n.
1 2 -3 0
I8 (=28 3
For example, and |2 4 -1
4 5 -6
3 5 -4

are rectangular matrices of order 2x3 and 3x4 respectively.

W N

(e} Diagonal Matrix
A square matrix is called a diagonal matrix if all its non-diagonal elements are zero.

Thus, the square niatrix [aj;] is a diagonal matrix if aj; = 0 fori#j.
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For example, [2], 1:0 :I,
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are diagonal matrices.
(f) Scalar matrix

A square matrix is called a scalar matrix, if its non-diagonal elements are
zero and diagonal elements are equal.

Thus, the square matrix [a;; ] is a scalar matrix if

k fori=j
a, =
Y10 fori#j
k 0 0 .. 0]

k 0 .. 0
For example |0 0 k ... 0| is a general scalar matrix of order n.

2 0 0
0
[g ] and 0 2 0| are scalar matrices of order 2 and 3
. 0 O
respectively.

(g Unit matrix or Identity matrix

A square matrix is called a unit matrix if its non-diagonal elements are
zero and diagonal elements are all equal to one (unity).

Thus, the square matrix [a,-j] is a unit matrix if

1 fori=j
a; = L
Y10 fori#

Such a matrix is denoted by




We have unit matrices of different order such as
10 0 0

0 0
0 00
1 0y, I,= and so on.
0 010
01
0 0 01
(h) Zero matrix or Null matrix
A matrix all whose elements are zero is called a zero matrix or null matrix.
If it has m rows and n columns. we denote it by O .« or simply by Oif there is no
ambiguity about its number of rows and number of columns.

Following are some examples of zero or null matrices:

0

00 0.0.0
[0] , [o0oo0O] . [Of . and ;
00 000
0
(i) Transpose of a matrix \

Let A=[a;] be an mxn matrix. Theitmnspose of A denoted by A, is an
nxm matrix obtained by interchanging rows and columns of A. Thus A'=[b]
where bjj = g;; for i= 1,2,...,m; j=1.2,...,m.

ty
For example, if A is a 3X2 matrix givenby A =|a, a4, |s

then its transpose A' 1s a 2X3 matrix

Al= ay  y dy
Gy @y ty]
(4} Upper triangular matrix

A square matrix A=[ay] ., is said to be upper triangular matrix, if all the

elements below the principal diagonal are zero that is a;=0 for all i > /.

1 2 3 4
2 3 | . 1 "
For example, |0 4 —2]and o 06 3 are upper triangular matrices.
0o o0 1
0 0 0 1
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(k) Lower triangular matrix

A square matrix A={ag}, . is said to be lower triangular matrix, if all the
elements above the principal diagonal are zero, that is ay=0 for all i <j.

1 0 0 O
2 0 0 I o0 o
For example, | -4 5 0 [and 4 2 3 0 are lower triangular matrices.
2 3 1
I o 3 2

M Triangular matrix
A square matrix A is called a
triangular matrix, if it is either upper

®tis obv1ous that dl )

triangular or lower triangular. : naﬁﬁgga:ppen riangular ancj*lower '
For example, 1 0 0 0 oIf A is triangular, then 1A| = product]
7 -3 4 5 0 0 0 of dlagonﬁtelcments
0 4 —=3|and ; > 3 ol M triangular matrices.
o 0 1 0 3 2

The first matrix is upper triangular while the second is lower triangular.
(m) Symmetric matrix
A square matrix A=[ay] of order n is said to be symmetric if 4'=A, that is,

if ay=a; fori, j=1,2,...,n

2.3 6 2 3 6
For example, the matrix A=|{3 1 —5] is symmetric,since A’ =|3 | -5|=A
6 -5 4 6 -5 4

(n)  Skew symmetric matrix
A square matrix A=[a;] of order n is said to be skew symmetric (or anti
symmetric), if A' =—A |, that is, if a; =-a, for i, /=1,2,....n
For elements on the principal diagonal, we have
ai=-a; = 2a;,=0=>a;=0fori=12,....,n
Thus the elements on principal diagonal of skew symmetric matrix are zero.

0 2 3
For example, the matrix A= | -2 0 -4 is skew symmetric,
-3 4 0




0 -2 -3 0o 2 3
since A' =| 2 0 4 |=(-Dj-2 0 =-4|=-A
3 -4 0 -3 4 0

2.2 Algebra of matrices
In this section various operations of addition, subtraction, multiplication etc
on matrices are defined.
2.2.1.(a) Addition of matrices Did You Know
If A={a;] and B=[b;] are two matrices of | . —
the same order mxn, then their sum A+B is * I the '5”""@ o matrices is

I o e : v . defined, ay that the two
defined as a matrix C=fc;] of the same order as N le I

A and B and whose elements are obtained by | additiom, _
adding the corresponding elements of A and B e The sum of two matrices of

together. : éﬁfffcrrentl order is not defined
L . | that is, they are not conformable
Symbolically, we write C=A+B whose elements = oo g a0

cy=ay+by for i=1.2,...m;j=12,...n. ;

» 1 2 3] EaV 3 4 5
For example, if A= and B= , then
0 -1 2 1 2 3

[ 2 3 3 45 [+3 244 345 4 6 8
C=A+B= + = =
0 -1 2 1.2 3 0+1 —1+2 243 |1 1 5

(b) Subtraction of matrices

If A = [ay] and' B = [b] are matrices of the same order m x n, then
“subtraction of 1na@riccs A and B is obtained by subtracting the corresponding
elements of Aand B respectively. The ditference of A and B (or the subtraction of
B from A)is a matrix D = A-B whose elements are dy= a;;— by = 1,2,...0... m;

1 2 3 3 4 5
If A= and B= then.,
0 -1 2 1 2 3

D=A-B=A+(-B)

1 2 3 -3 -4 =5
= +
0 -1 2y |-1 =2 -3




(c)  Scalar muitiplication

If A=[a;] is a matrix of order mxn and k is any scalar, then the scalar
multiplication kA of the scalar k and matrix A is defined as a matrix each of
whose element is the product of k and the corresponding elements of A i.e.

kA =k[ayl=[ka;]; i=1,2,......m; j=12,....n
1 2
For example, if A= |:3 4] Note
. » ClearlykA:samamxofmesame"dsﬂcrasmc

and k is any scalar, then R A Q

1 2 ko 2k s A+A=2AA+A+A andingeneral,
kA = k|: ] [ ] if n is a positive inte er%en

3 4 3k 4k AFTA T S
(d) Multiplication of matrices _ -ffms&

Two matrices A and B are said to be conformable for mulnpllcauon giving the
product AB, if the number of columns in A is equal to the number of rows in B.

Suppoese A = [a;] is matrix of order mXp and B= [by] is a matrix of order
pxn. Then their product AB is a matrix C={c;] of order mxn with elements c;
defined as the sum of the product of the corresponding elements of the ith row of
A and the jth column of B i.e.

Ci=ayb, +a,b,, +.... +a, b .-Zadb

The following illustrates the expression for c;;
Jth column

[a, @ e a, | [b, By e (B) oo b, | [en Caee G Gl

1 & 1y

by by e P b

1p 4 12 o 2 2 qpeeee ) 3

ith row
— @, Uy e qa.
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312
For example if A = [2 { 3} and B=|3 1| are two matrices of order 2x3 and
23

3x2 respectively. Then the product C = AB is 2x2 matrix defined by

12 '
3 2 Ixi+1x34+2x2  3Ix2+1x1+2x3 10 13
C=AB= 31| = =
2419 13 5 2x1+1x3+3x2 2x2+Ix1+3x3 11 14

The matrices A and B are also conformable for the product D=BA defined as

1hi2 ' 7 3 8

3142
D=BA=|3 1|, : =[11 4 9
203 12 5 13

C and D are matrices of order 2x2 and 3x3 respectively.
2.2.2 Commutative property |
2 U

1 -2 3 |
Let A =[3 5 I]and B=i—1 2| Find AB and BA and show that AB #BA,
: S
Here, A is a 2x3 matrix and B is a 3x2 matrix. So, AB exists and it is of order 2x2
o 37
1 =2 3
We have, AB = -1 2
NY2 -1
_ 4 =5

B 24+2+12 3-4-15 n 16 =16
Tl6—-2-4 9+4+5| j0 18

Again, B is a 3x2 matrix hnd A is a 2x3 matrix. So BA exists and it is of order 3x3

2 3
1 =2 3

Now,BA=|-1 2
3 2 -1

4 =5

2+9 —4+6 6-3 11 2
— BA=|-1+6 2+4 =3-2[=|5 6 -5

4-15 -8-10 12+5 -1 -18 17




Clearly, AB # BA

However, commutative property w.r.t. addition clearly holds if both matrices are
conformable for addition and is explained below:

Commutative property w.r.t. addition, i.e, A+B =B + A.

abc jk
Let A=ld e f| and B=|m n o betwo 3 x 3 square matrices.
g hi pqr
abc j ok a+j b+k c+l
Then A+ B=|d e f|+|\mno)= d+m e+n f+o (1
g hi pqr g+p h+gq itr
FR abc
and B+ A={mnoj+|def
lpqgr g hi]
[j+a k+b I+c | [a+j btk c+l |
= |m+d n+e o+ f| =|d+m e+n f+o (2) |
Lp+g g+h r+i | g+p h+g i+r

Since addition is commutative in IR. From (1) and (2}, we hﬁve A+B=B+A

3 2 2 5
Example 1: 1fA=|4 —1|and B=|-1 4 |, then show that(4+B)' = A" +B".
6 |1 0 3

Solution: Since
3 2 2 5| [3+2 245 5 17

A+B=|4 —1]|+|-1 4 |=[4-1 -1+4|=(3 3 ,So(A+B)t=|:j zj] (1
6 |1 0 3| |6+0 1+3 6 4

3 4 6 2 -1 0
Now A' = ,B'= ,
2 —11 5 4 3




3 46][2 -1 0] [3+2 4-1 6+0][5 3 6
A'+B = + = = (2)
2 —-11 5 4 3 245 —1+4 1+3 7 3 4
From (1) and (2), we have (A+B)'= A' + B".
2.2.3 Verification of (AB)' = B' A"

-
Example2: IfA=| 2|andB=[-2 -1 —-4], verify (AB)' = B'A!

3
-1
Solution: A= 2 andB:[—Z -1 —4]
3
-1 2 1 4]
~AB=| 2|[-2-1-4]=|4 -2 -8
3 -6 -3 <12
| 24 -6
=(AB) =[1 -2 -3 (i)
4 -8 -i2]
-1 [-2 2 -4 -6
Also, B' A" = [£2v -1 4| 2{=|-1{[-t 2 3]=l1 -2 3| (i
3 —4 4 -8 -12

From (i) and (ii), we observe that (AB)l =B'A

1. Express the following as a single matrix.
0 29821 W et G
M [ 2 4270 1ha] Gy 2 3)l0 2 4|2 =5 7]
01 26 g & a

bl '||4-.-.I= _I“Lﬂ":" :
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3 .
TARSIED) 4 o<
(i) 442 v LSS S RS2 | LR
9 2 1j 1772 1 —a]"-1 1]fl2 4 6

% = ] | =) —g) 0 1 =2]
2. LC[A= s B: and C: .
3 0 -4 0 =1 5 O =]

Find 2A + 3B —4C.

a h g X
3. (i)ifA=[x y 2], B=|h b f|andC=|y |, verify that(AB)C=A(BC)
g f c z
(ii) IfA Ledll B 4 sl ify that
11 = ! = —_ s .
-1 4 04l 2] ERCS oW ol e
@ A(B+C)=AB+AC (b)A (B-C)=AB — AC
144
4, LetA=|414 -showthat%Az—2A—91=O.
4 4 1
0 2b -2
5. MatrixA=| 3 | 3 is given to be symmetric, find values of a and b.
RELRE P\ :

6. Solve the following matrix equations for X.

_ , 103 Dkl
() X—3A=2B,ifA= and B=
3 -14

2 21
e e 2 Al B
a2 1| S| 50
iv () =4l & ZEE— 1V 3] '
75 1if A=|3 1 2 S5|and B=|1 3 -1 4],
0 -21 6 o) b o=l

then show that (A+B)' = A’ + B'.

i Mathematics-X]



8.

9.

10.

11.

12.

13.

23.

Lol

1022 S ()
Let A= A . Show that
(i) (A=A (i) AA'#2A'A
Verify that (AB)' =B’ A’ if
Sl 185241 1.9 15 18551
(1) A=1“ . 1],8: 2382 (11}A=[1 3 ﬁg]33= 2383
- 3 I <§§ 1 -2
5 \§
=3 Y] 5 6 7 %0‘}3
Let A=|-3 2 =5 |and B =|6-8 3‘%_;
. 4 -5 0 730 Y
yanl, Al : AL ,r{“ . .
Verify that A and B are symmetric. Also @habﬁ + B is symmetric.
0 1 -2] 0 .36 11
LetA=[-1 0 3 andB;@;;&o 7
24123008 @£‘117 Q
Verify that A + B is skey%sg/mmctric. !
A :
3D 1,_:,;‘ 4
N 1)
If A={4 5 6],then verify that
i > N
23 4
Jl.

o -
(i) A ;-t-“‘Af‘is symmetric (i) A - A is skew-symmetric.
If A is a square matrix of order 3, then show that:
()A + A is symmetric (i) A — A is skew-symmetric.
Determinants

Consider a square matrix A of order n given by

A=|pEES TR »




NE. ="

e e e T e L
- Unit2 |-'M:_!triees'andI:_Qetermiﬁants‘f: " r
The associated determinant of A is denoted by
a, Gy a4,
G Lo ay
Al = (2)
aul aul """ arm

Some determinants of higher order can be evaluated only after much
tedious calculations. The more calculation is involved, the greater the chance of
error. Our aim in this section is to describe a procedure for evaluating the
determinants of order n> 3. However, this procedure will be greatly simplified by
the introduction of the following.

2.3.1. Minor and Cofactor of an element of a matrix or its determinants

(1 Minor of an Element Let A be a square matrix of order n (as defined in

(1) above). The minor of the element a; of A, denoted by M, is the determinant

of (n—1)x(n—1) matrix obtained by crossing out the ith row and jth column of A (or IAl).
a, 4 4

If A=|a, a, ay|, then

ay Ay Gy

ey pytyy
. ay Oy ;
minorof a;; =M, = obtained as |@,, @, .
L 3
(3 dp Ay
ay 4 4
. a,, 4 .
minor of a,;, =M, = obtained as |@s;ftys--8,| and so on.
ay ay
a; a3
(Remember m
ey

From the formula A =(=1)"M 4 it is clear that if the sum i+j is an even
integer, then the cofactor equals the minor. On the other hand, if the sum i+j is
odd, the cofactor is equal to the negative of the minor. The signs accompanying
the minors may be best remembered by the rule of aliernating signs with +'s on |

the main diagonals. o, 4

 Mathematics-XI 4




1 2 3
Example3: Let A=[6 5 4. Findthe minors M, ,,M,,M  and M,, of the
7 89

matrix A.

Solution: We have

5 4 6 4
M, = =45-32=13,M,, = =54 -28=20,
8 9 S 79
M -5 5~48 35=13, M L 3’-—9 21=-12
IJ—-’ 8"' = 2;-_—‘7 9— 1= =

(ii) Cofactor of an element
Let A be a square matrix of order n. The cofactor of the element ay,

denoted by Aj;, is defined by Aj=(-1) i+ M;;, where M; is the minor of ajj.

a, a4, 4;

Thus ifA=|a, a,, a,;|,then \
|

y dyp Ay !

1+l 2l Ay

cofactorof a,, = A, =(-1D)" M, =(-1)

ty, Oy
=X (aya;, —ayay,)
= ;= Qay(3,

id a, a,
cofactor of @y = A= ()" "M, =(=1°[ "

a Ay
= —1x(a,,4,, —apay)

= —(a,,a,, — a,,a,,) and so on.

= 25
Example4: Let A=(3 0 -1} Findthe cofactor A, and A,,.
Jn 20

0
= Ix(3%x2-0x5)=6,

3
Solution:  Wehave A, =(-0)'"M; =(-1)* -

)

"= —1x(=2x0-5x2)=10.
20|l

-

and A, =(=D""'M, =1’




2.3.2 Determinant of a square matrix of order n>3
Let A be a square matrix of order #(= 3) given by

a, Oz - [ a,,
(y, e Ay oonee .,
A= (1)
a, d, (P a,
| a, g3 eeeens @y oo o

The determinant |Al of the matrix A is defined to be the sum of the
products of each element of row (or column) and its cofactor, that is

lAl=a, A, +a,A,+....ta A i=12. .0 2)
or Al= (:,J.A,j -i-a:J.A:J +oe, +a”;Aw;j =12.....1 3)

If we puti=] in (2), we get
|Al= a,, A, + @Ay + oot 0y, A, . This is called the expansion of |Al by first row

(or w.r.t. first row).
Similarly, if we put j=1 in (3), we get
|Al=a, A, +dy, Ay + ot ay A, - This is called the expansion of 1Al by

first column and so on. Thus, if A is a square matrix of order 3, that is
a, d, dy .
A=|a, a, a,|, thenby (2)and (3), we have
Iy Uy Uy
|Al= @, 4] $ Ay +a,hy; =123 )
4 C i /
or IAl—a,jAU+asz2j+anA3j, j=12,3 {3)
For example, if i=2, then by (2’), we have

| Al= a,,A,, + aynA,, +d.,A,,. This can be written as

IA |= azl (_1)2+IM2! +ﬂ22(_])2+2n422 +(123 (—l)2+3M23 .

a; @y 4y

L5

+ .,

3

ty Ay

sy €y dyy




= =0, (8,05, — a,3,a5,) + ay (a5, — 0,,05,) — dy(a, ay, —dpay )

= =y Uyl + y O30y + Aoy Oy Qyy — G40yl — Qa0 Uy, + 053,05,
= 0,030y 030505 +0130,,03, — A, lyy5, =030, Gy — 043 Uy @y (4)
Similarly, we can find |Al for other values of i and J.
The expansion of |Al in (4) can also be remembered by the following
procedure.

Rewrite the first two columns of the matrix A after the third column and
use the following diagram, if A is a 3x3 matrix.

(5)

The arrows pointing downward represent the three products having a

positive sign and the arrows pointing upward represent the three products having

a negative sign. :

37— 1IN2 1
Example5: If A=(3 1 0|, thenfind |A j
1 0 -1]
3 AN
Solution: lAl=|3c1 O
I 0 -1
We expand the determinant by using the elements of the first row, we have
LAl= a,, A, +au A, +a A, ()

1+] 1 0
But Ay=CED"M =M =

0 -1




1 0 3= 0 31
1Al=(3) IO —J_(_l)ll _ +(2) 'l 0
= ()[(Ix=1-0xO)]=(-D[Bx—-1-0xD}+(2)[(3x0-1x1)]

==3-3-2=-8
We now expand the same determinant by using elements of the third

column, that is | A= a,A; +a,A; +ag Ay, (2)

O i
ult, no matter
s 3 —1 which row or colun is used to
Ay =(-1) M11=_M23="l |

Now

3
A= (—I)MM” =M;= |

3 -1 : :

A, = (——l)3+3M33 =M, = | also be e&éﬁ%d by the two simple

3  method given in (4) and (5). |

Putting in (2), we get e — — - '
Al=(2) . 0 ”'+( 1y oo
“h oo 1 0 3 1

=(2)3%x0-1xD=03%x0+1Ix)—13x1+1x3) =-2-0-6=-8.
2.3.3 Singular matrix and non-singular matrix
A square matrix A is called a singular matrix if its determinant is zero, i.e.

l A | =0, otherwise, it is a non-singular matrix.

1 2 3 1 23
IfA={4 5 6| then |[A]=|4 5 6=1(45-48)-2(36-42)+3(32-35)=0
7 89 789 |

Therefore, A is a singular matrix

2.3.4 Adjoint of a square matrix
Let A be a square matrix of order n. Let /! denote the matrix obtained by

replacing each element of A by its corresponding cofactor. Then A" is called the
adjoint of A and is usually denoted by adj A i.e. adjA= a

a, qn Oy A A, A

i3
=
M

Thus, if A=|a, @, @[, then 1 =|A, A

A3y 5 Ay Ay Ay
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AFI AI2 AIJ T AH AE! A3I
andsoadjA=1'=| A4, A, A,| =|A, A, A,
AJI AJ'.' A'!S__ AIJ A23 A33
-1 1 0] 3 -1 -1
Forexample, ifA=|1 1 2|, thenﬁ:l:—l =1 |i-1
; 0 -1 1] 2 2 =2
; 3 -l

2
andsoadj A =4 =|-1 -1 2.
] G2

2.3.5 Use adjoint method to calculate inverse of a sqﬁare matrix
LetAbea square matrix of order n. If there exists a sqnafe matrix B of order n
such that AB = BA =1, where I, is the multiplicative identity matrix of order n.
then B is called the multiplicative inverse of A and is denoted by A™".
Thus AAT =AT AL . ‘
1t may be noted that inverse of a square matrix, if it exists. is unique. Moreover, if
A i1s a non-singular square matrix of order n, then A~ =__1__| adj A.

=2 1
Example6: Ler A=[0 1 -2| Find A"

-1 2 0

Solution: Since A™' = &Iadj A, weneed to find adj A and | A L.

First we find co-factor of every element of A.

el 1 -2 .lo
A,,:(—l)'“q Ol =1.(0+4)=4, A,=(=N"

-

B 0 1
A13=(“])]+3 t =1-(0+h =1, An:(_—l‘f“

-1 2




1[,,”?1 llYlv -:;L .’vr j-—tu.

19 =1 = 1, x=2
A, =(-D™" OI =1(0+1)=1, A= (CDE 2’:-1-(2—2):0
- 1| . 1
Ay = (~D _2‘ =1(4-D=3,  Ap=(D —2|=_]'('2_°)=2
A —(-'1)'~“+31 A La+0)=1
33 0 1 i
4 2 3
So adjA=|2 1 2
1 01

Next we find |Al
Since lAl=ay A, +a, At ag A,
=1.(4)=-2(2)+ K1)

=4-4+1=120.
- 4 2 3lel™ 2 3
Thus A"—llmade=l 2 1 2f=[2 1 2
1 0 1|t 0 1

24  Properties of determinants
We shall state some of the useful properties of determinants which

simplify the evaluation of determinants.
Property 1.  If every element in a row or column of a square matrix A is zero,

then |Al=0.

and every element in the first row is zero,




Now I|Al=a, A ta,A;+aA, =04,+04,+04,=0.
We get the same result if every element of any other row or column is zero.
Property 2. If all elements of the corresponding rows and columns of a square

matrix A are interchanged, then the determinant of the resulting matrix is equal to
|Al. That is, the determinant of a square matrix and its transpose are always same.

all al2 a13 all aZl a3l
If A=la, a, a,|and B=|a, a, a,|, then
4y G5 Gy A3 Gy Gy

IBI = |Al. Proof is left as an exercise.
Property 3. If any two rows or two columns in a square matrix A are
interchanged, then the determinant of the resulting matrix is —|Al. In other words,
both the determinants are additive inverses of each other.

a, 4a, 4a; iy Oy 4y
If A=\|a, a, ajyland B=|a, a, a,| isthe
ay ay Gy Gy Gy Gy

matrix obtained by interchanging the first and second row of A, then
) G s
IBl=|a, a, a,
dy Gy a4y
= 0y, (A @33 = 0,05 ) — ay (0, a5 — ayay ) +ay(aa;, — A4 )
= 5y — Oy )35, — A0y Gy + Ay ydy; + Gy Gy — Gy

= —(8,,0,,0;; — 0,,05,0,, — (50,05, + 8,085, + Q,,0y,85, — a0,y )

==|Al.
Property 4. If a square matrix A has two identical rows or two identical columns,
then 1AI=0
ﬂ” aIZ al] a!l 022 023
If A=|a, a,, ay|and B=|q, a, a;| isamatrix
a; dy ay a; Gy ay

obtained by interchanging the first and second rows of A. Then by property (3),
IBl = —|Al. But the first and second rows of A are identical, mean A=B and so




|Al=IBI. Hence IAl = —lAl or 2IAl = 0 or |Al = 0. The same result is obtained if

any two columns are identical. _
Property 5. If every element of a row or column of a square matrix A is
multiplied by the real number k, then the determinant of the resulting matrix is

kIAI.

a 4, 4a; ka;, ka,, kay,
If A=|a, a, a,|and B=|a, a, a, |isthematrix
a4y Gy 4y Gy Gy Gy
obtained by muitiplying first row of A by k. Then
ka,, ka, ka,

= kay Ay, +kap A, + kajy A,

= k(a, A, +ap A, +a,A;)

=k[Al.

A similar result is obtained if any other row or column is multiplied by k.

Property 6. If every element of a row or column of a square matrix A is the
sum of two terms, then its determinant can be written as the sum of two

detemginants.

IBi=|a,, a, a,

ay Ay Ay

ay a, d; a,+b, a, a
If A=la, a, a,| then |lAl=|a, +b, a, ay )
Gy 4y Gy a, +b, ay a;

Expanding by the first column, we have
lAl=(a,, +b,)A, +(ay, +b,}4,, +(a,, +b,)) A,
=(ay Ay +ay, Ay +a,A))+ () A, +by A, +byA,)

a, a, an| |b, a, a;
=0z Gy _a23+b2, Ay Ay

a, dy ay| |y ay
Property 7. If every element of any row or column of a square matrix is
multiplied by a real number k and the resulting product is added to the
corresponding elements of another row or column of the matrix, then the
determinant of the resulting matrix is equal to the determinant of the original

)

33

matnx.
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a,; G 4y
If A=l|a, a, ay
a, a4, Gay

a, +ka, a, a;
then B=|a, +ka,,

a, tka, a;, a;
" matrix obtained by multiplying every element of the second column of A and then

is the

ay Ay

adding to the corresponding element of the first column of A, then

a,+ka, a, as| @ 6, a;
tBl=|a, +kay ay auj=|ay ap 6y
a, +ka, a;, aj| |a; ay 4y
Ay G Gy

=|dy 4n 4y

a; a; Gy

a, Gy Gy

=gy an A4y

a, Gy Gy

a, G, 4,

=lay G Oy

a; 4; 4y

k"nz
+ka,,

a; G,
a, ay| by property (6)
a;; Gy
G, Gy
@, ay| by property (5)
ay, ay

by property (4)

1 3 1
- 1. If A=|-1 2 0 |thenfindA,, A, Ay Ay, Ay, Ay, Alsofind | Al
2 0 -2 ;
2 Without evaluating state the reasons for the following equalities.
20 1253
G B 1 ol=0 () |8 4 -12|=0
-1 2 2 -1 3
130 =218 2 3 20 320
giy 3 -1 1|=3 -11 vy 1 1 -=-3|=-31 1 1
2 1 4| {21 4 2 4 -6 2 4
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1 0 -1 1 0
3 2 l=-i1 -1
2

1 -1 0 3

3. Let A be a square matrix of order 3, then verify 1A'= AL

4, Evaluate the following determinants.

0 1 3
-1 2 1
2 1 1

ISN12
6 -5 4
-9 8 -7

3. Show that

[~}
3 3 e~

b

N3 D
il

" o 8

1 1 1

b+c c+a a+b

6. Prove that
a=-b b-c c-a
b-c c-a a-
c—-a a-b b-a
1 a a
1 b
1 ¢ c’

N

a b c |=0

(i1}

(iv}

3 4 -2
2 4 -6
-4 2 0
2 1 -3
1 1 0
2 3 4
a b c
1-3q 2-3b 3-
4 5 6
bc ca abl |1

a b cl=|d

ia P Y |a

2
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L a a .
(i) |1 b b’ “—*(a—b)(b—c)(c-al
| c ¢’
—a ab ac
(iv) fab  —-b*  bc |=4da’h’c?
ac bc —c?
bce a l
a b,
(v) [ca b %=0, az0,b#0.c#0
abiiiict 4
c
8t 82 83
7. Evaluate (1) S (1) |84 83 8
. Ev :
#€ W hge2 3863 .
87 88 89
I+x y z
8. Provethat |x I =1 B+ yhz
x y 1+z
X P q
9. Provethat [p X g|=(x—p)(x~q){x+ p+gq)
1P g X
1+a i 1 1N
10.Prove that 1 i+b 1 =abc(1+-—+—~+l)
a b ¢
| 1 I4+¢
11. Identify singular and non-singular matrices.
Tilblke 3 o= 3,2 =3
(1) (3 A = {ii}-_ 3 =2 | @) {3 6 -3
S PRl s =20 -- S IR -1 0 1




12. Find the value

13. Solve for x

i) T
(mjo -1 1
0.4 .5

14. Show that if

-4 1
of A if A is singular matrix. Where A={ 1 -4

lo 1

= 1N O] x+2 3

=9 (i)[x2 1 x|=-6 Gi)| 2 x+3
o 0T A 2 3

inverse of a square matrix exists, then it is unique.
[@-a ¢ ;
-1 3 2| Find A™

15. Let A=
16. Let A=
17.  Verify that (

& ® &
& =i Show. that | A~ l= =i
_.4 2. oW al 'I-A"]_
2 3 241 1l
AB)'=B'A'if A= . B=
S 2 3

18. IfAandB are non—singu[ar'mairices, then show that

@ @

19. Let 'A=[

yi=A (i) (AB)'=B"'A"

2 3 i
27 1]. Verify that (A™) = (A")"

25 Row and column operations
2.5.1 (a) Row operations on matrices

The following three operations performed on matrices are called

(elementary) row operations:

(i) Interchangin

g of any two rows.

(ii))  Multiplication of a row by any non-zero scalar.
(iii)  Addition of any multiple of one row to another row.
Notations:  We use the following notations to express the elementary row
operations (i), (ii) and (iii):

¢ Interchanging of row R; and R; is represented by R; & R;.
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¢ Multiplication of a row R; by a non-zero scalar k is denoted by kRi.
¢ Adding k times R; to R; is expressed as Rj+kR,.
(b) Column operations on matrices
The following three operations performed on matrices are called elementary
column operations:
(i) Interchanging of any two cqlumns i.e.C, & C, .

(ii) Multxphcatlon of a column by any non-zero sca]‘u' kie. kC,
(ili)  Addition of any multiple of one column to another column i IE C/+kC, ,
where C,,C; are any two columns and k is any non-zero scalar.

If A is an mxn matrix, then an mxn matrix B obtained from A by
performing a finite number of elementary row operations on A is called row
equivalent to A. Symbolically, we write BR A to denote B is row equivalent to A.

Similarly, we can define a column equivalent matrix that is replacing the
word “row” by “column” in the above deﬁmtlon We write BEA to denote B is

column equivalent to A. .
12
Example 7: Let A=| 3 5. Perform the following elementary row and
-1.-4

column operations on A.
(i) R, & R, (i) C,eC, (i) R+2R (V) C,~C, (VIR —4R,

-1 —4
=R —4 2.1
(i) RyeaR: 3 5 (i) C,eCl 5 3
2 -4 -1
1 7) 12

(iil) R,+2R,:[3+2(1) 5+2) =t5 9
-1 -4 1104
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1 2+(=D) 11 |

(v) €,-Cif3 S5+3 |=[3 2 '

S —as (-1 {1 -3 |
(V) R—4R,s 3 5 = |E3ge 5

-1 -4 -1 -4

2.5.2 Echelon and reduced echelon form of a matrix
(a) Echelon form of a matrix
“An mxn matrix A is said to be in (row) echelon form (or an echelon
matrix) if it satisfies the following properties. :
@) In each successive non-zero row, the number of zeros before the first non-
zero entry of a row increases row by row,
(ii)  Every non-zero row in A precedes every Zero row (if there is any).

14+ (-4(-1)) 2+ (-4(-D) 5 18

2 3 -4.1 0 2 3
For example, the matrices {0 1 5 3 and {0 0 -5 ]areinechelon
0 0 0 6 0 0 0O
0 01 2
form, but the matrix [0 1 2 3| isnot in echelon form.
0 0 01

(b) Reduced echelon form of a matrix ‘
An mxn matrix A is said to be in reduced (row) echelon form (or reduced echelon |
matrix) if it satisfies the following properties. '

(i) It is in (row) echelon form, |
(i)  The first non-zero entry in R, lies in C, is I and all other entries of C; are

Zero.

For example, the matrices are in (row)

2 0
0 0
0 1
0 0

1 0 2
0 1 3]|and
0 0 0

o o O




0 3
reduced echelon form but 1 2|and are not in {row)
0 4

o oo
o o -
oo o =
oo o
o o W o

reduced echelon form.
2.5.3 Reduce a matrix to its echelon and reduced echelon form

Je-a30% 4
Example 8: Reduice A=|3 1 -1| toechelon form and then to reduced
echelon form. I -2 -5
2 3 -4 =21 s
Solution: |3 1 -1 R[3 1 -1|byR &R,
1=20-5 2 3 &%
1 -2 -5 [1 -2 -5
R|0 7 14|by R,-3R, R |0 7 14|by R,-2R,
2 3 -4 0 7 6
[1 -2 -5] [1 -2 -5
RO 1 2|by %Rz R0 1 2 |byR,7R, 1
10k" 7Rl 0 0 -8
1 -2 -5] 1. 0| -1
RIO 1 2fby-2R, R|0 1 2{byR,+2R,
0 0, QY] 0 0 1
[1 @\ 0
R|0 1 0|by R, +R, andR, -2R, 2
| 0 %051

The matrices in (1) and (2) are in echelon form and reduced echelon form of the
given matrix A respectively.

2.54 Rank of a Matrix

Let A be a non-zero matrix. The rank of the matrix A is the number of non-zero
rows in its (row) echelon form.




2.5.5 Using elementary row operation (ERO) to find the inverse and the
rank of a matrix

(a) To find inverse of a matrix

Let A be a non-singular matrix. If we perform successive elementary row
operations -on the matrix [A | I], which reduce A to I and I to the resulting matrix
B i.e. if [A 11] is reduced to [I| B], then B is the inverse of A written as A,
Similarly, if we perform successive elementary column operation on the matrix
[A | I], which reduces A to I and I to the resulting matrix C, then C is the inverse

of A written as A'_'. 9 3 1
Example 9:Find the inverse of the matrix A=|5 4 2
2 3 1 -1 2 -2
Solution: Since |5 4 2
-1 2 -2
4 2 5 2 5 4 i
=2 5 _2| -3 I_‘1 _ 2‘ +1 ‘_1 5 (expanding by first row)

=2(-84)-3-10+2)+(10+4)=-24+24+14=14 # 0.
So A is non-singular and A™" exists.
2 3 111 00 -1 2 -210

Now|5 4 21010 135
-1 2 =210 1 2 3
(1 -2 210 0 -1
RIS 4 2|0 1 0fbyDR,
2 3 1|10 O
1 2-2|0 0-1
R|0 14 -8 |0 1 5]|byR:-5RiandR3-2R,
0 11 Tun23d 11 | 02l 5%
1 2 -2 0 0 -1
-~ 1 5
R0 1 =2 Oﬁﬁby]ld'Rg
0 7-31-1 0 -2
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[ -6 2 ma2j]
1 0 7 0 = 7
-4 L Ll
B 0 | -,',"' 0 1_4 ﬁ' by R;—2R2 and R3—7R3
o b=t )
OO =N IR | — e =
| 6 6 |
[ -6 -4 ~29]
i 707
2 =5 -1 6 4
13 ONR1pe0 3 3 1 byR|+7R3andR2+7R3
3% o it S e U
§ 3 18 18]
6 -4 -2
7 7 T
Thus A~ = 2= Sl
3 8 18
Ll Y
|3 18 18]
(b) To find rank of a matrix 4 5 6
Example 10: Find the rank of A=(1 2 3
TE889
M5 161 1811052 13
Solution: A=|1 2 3| R[4 5 6[byR,&R,
T 8519 7 8 9
LA 2 3]
R0 -3 -6 byR,-4R, andR;~7 R,
0 -6 -12

by R,—2R, The last matrix is the echelon form
of A having 2 non-zero rows.
L Hence the rank of A is 2.

3.
=] =1 &=
o - B
o bW
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CEXERCISEI2.3!

1; Reduce each of the following matrices to the indicated form

1IR3 1 2 3 -1 9
2 1 4} Echelon form 1 -1 2 -3|Reduced echelon form
3 4 -5 31 3 2
2 -3 1 1 0 -2
1 1 2| Reduced echelon form 2 eul 1 | Echelon form
418 Limy 7 3 2 o8
2. Find the inverses of the following matrices by using elementary row
operation. |
4 -2 5 3 -1 6 1 2.-3 Lol =
2 1 0 1 B3 a4 o 2 ¢ o0 -1 3 |
-1.2 3 -1 5 1 -2 -2 2 1 0 2 |
. Find the ranks of each of the following matrices. |
10 =2 31 -4 |
2 a2 dnil NO 2 1
=1ER 23 1 -1 =2 |
4. Find
R | & = 1 e i
RANK OF MATRIX
2 3 4 5 4x 4
3 4 5 6 .
a s 6 7| matrix
9 10 11 12

Mathematics-XI ‘




2.6  System of linear equations
2.6.1 Homogeneous and non - homogeneous linear equations

- Consider the equation ax+by =k . ' (1)

where a # 0,5 # 0 and k # 0. The equation (1) is called a non-homogeneous
linear equation in two variables (or unknowns) x and V.

Now consider the following two non-homogeneous linear equations in two
variables x and y.

ax+by=k, } -

ax+b,y=k,

These two equations together form a 'system of non-homogeneous linear
equations in two variables x and y.

If we take k = 0 in equations (1), then it takes the form  ax+ by =0 €)]
and is called a homogeneous linear equation in two variables x and y. If we take
k, =k, =0in (2), then

ax+by=0
(4)

a,x+b,y=0
is called a system of homogeneous linear equations in the variables x and y.

Similarly, the following equation,
ax+by+cz=k,where a#0,5#0,c#£0,and k #0 {5

is called a non-homogeneous linear equation in three variables x,y and z and
the following three non-homogeneous linear equations in three variables x,y and z.

ax+by+cz=k,
a,x+b,y+c,z=k, : (6)
ax+bytcz=k,

together form a system of non-homogeneous linear equations in three variables
x,y and z.

If we take k = 0 in (5), then ax+by+cz =0 (7)
is called a homogeneous equation in three variables x, y and z.

Ifwetake ki, =k, =k, =0in (6) then




ax+by+cz=0

a,x+b,y+c,z2=0 _(8)

ax+by+c,z=0
is called system of homogeneous linear equations in three variables x, y and z.
An order triple (t,, t,, t,) is called a solution of system (6) if the equations are
true for x=¢ ,y =1 and z =1, The solution set isdenoted by S={(t,, t,, t,}}.
In the case of system (8), we see that it is always true for x=t,=0, y=t, =0
and z=t,=0, so'the order triple (t,, t,, t;) = (0,0,0) is a solution of the system.
Such a solution is called the trivial (or zero) solution and any other solution, if it
exists, other than trivial solution is called a non-trivial (or non-zero) solution
of the system. Consider system (6). Since

fax + by + cz} [a b ¢}
ax +by + c,z|=|ay, b, ¢, [|y]|>
la;x + by + ¢c;z] |4, by ¢, ||Z

then system (6) may be written as a single matrix equation

4 bl G £ -kl (9)
a, b ol|yl=lk, Did You Know
la, b, ¢ |[z] [k] In wnnng;the augmented
_ matnx of a"lmcar system.
or AX=B (10) ~wc enter zero whenever a
a b ¢ x k, ;vanable is mxssm-g in I
_ 3 _ ;equwon, smoe the
where, A=fa, b, c¢,|,X=|y|{ andB= k, coefﬁclent of'the vanablei
a b ¢ Z k; i}_s_zero i) j

A is called the matrix of coefficients, X is the column vector of vanables and B
is the column vector of constants. If we adjoin the column vector B of the constants

to the matrix A on the right separated by a bar or a vertical line, that is

a b ¢ k,
[AIB] =|a, B, o | k|,
a, b ¢ k,

the new matrix so obtained is called augmented matrix of the given system.




Consider the following system of three homogeneous linear equations in three

unknowns x;, x,, .X;. ‘

apx, +a,x, +a,x, =0 (3]

ay X, + %, +a,x, =0 (ir) n
ay X, +a,x, +ax, =0 (iii)

which is equivalent to the matrix equation
4, a8 “4 0
ay Gy Ay x, [ =10]| orsimply AX =0,

ay; 4z Qy Xy

agtl a3 ¢
where A=|a,, a,, a, [.X=[x,| andO=|0
0

a, a, ay X3

If IAl# 0, then A is non-singular and A exists.
Wehave A (AX)=A"' 0= (A A)X=0 =X =0 = X=0,thatis

x| |0
X, | =|0
X, 0

orx, =0,x, =0andx, =0. This shows that the system has only trivial solution.
Thus, we may conclude “A system AX = O of three homogeneous linear
equations in three variables has a trivial solution if A is non-singular i.e. |Al # 0".
Next we find the condition under which the system (1) has a non-trivial solution.
Multiplying equations (i), (ii) and (iii) of the system by the cofactors A, A, and

A ;,of the corresponding elements a,,, a,, and a,, and then adding them up, we get
(a,, A+ ay Ay + a5 Ay )X + (a4 + anhy +a3mA3) 5 +

(a4 +dp Ay +ay Ay )X =0.

From this, we have |Alx,=0. Likewise, we can have |Alx, = 0 and |Alx,=0. The
system (1) has a non-trivial solution if at least one of the variable x,, x, and x, is
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different from zero. Suppose x, # 0, then Al x, =0 =Al=0. Thus, we may
conclude: “A system AX = O of three homogeneous linear equations in three
variables has a non-trivial solution if A is singular i.e. Al =0".

Example 11: Show that the following system has a trivial solution.

2x+ y-z =0 (i)

x+ y-z =0 (ii)

x+2y+2z =0 (iii)
Solution: Since

21 -1 1 0 O i _
Al=f1l 1 -1, =t 1 -1 =1 |2 —2‘ = 242 = 4# 0, the system has a
1 2 2 1 2 2
trivial solution. Subtracting equation (ii} from (i), we get x = 0. Subtracting
equation (iii) from (ii), we have y = 3z. Putting x=0 and y=3z in equation (i) we
obtain z = 0, and therefore from y = 3z, we get y = 0. Thus x = 0,y=0,z=0and
the system has only trivial solution.
Example 12:Show that the system ha non-triviat solution

x+ y+2z=0 i)
2x+y-2z=0 (ii)
-x +5y+4z=0 (iii)

Solution: Since
1 1 -2l p 00
Al=-21 -1 =}-2 3 3 =113 3
6 6
-1 5 4 -1 6 6
Thus the given system has a non-trivial solution.
Adding 2 times equation (i) to (ii) we have y=-z
Subtracting equation (ii) from (i), we get x =2 putting x=-z=yin equation (iii)
we have —(=z) + 5 (-z) + 4z = 0 which is true for any value  of z. We get that
=-t,y=—tandz=1 satisfy equations (i), (ii) and (iii) for any real value of &

=18-18=0

Thus the given system has infinitely many solutions.
Example 13: For what value of 2 the system has a non-trivial solution. Solve the
system for the value of 4 .

x-y+2z=0

2x+y+Az=0

3x+y+2z=0




A Y rmiinant
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3 |12

2 3 -4
2—1=.L 4F>42—«A—@=4—4A

We know that the system has non-trivial solution if IAl=0, that is 441 =0 or 1 =1.
Substituting the value of 4 into the system, we have

x—y+2z=0

2x+y+z=0

x+y+2z=0

Now solving the first two equations, we get x = -z, y = 3. Putting these

values in the third equation, we obtain ~3zl+z+2z=0 which is true for any value t
of z. We see that x = —, y =t and z = 1 satisfy all the three equations of the system
for any real value of 1. Thus the given system has infinitely many solutions for
A=l

2.6.3 Consistency and inconsistency of a system

{a) A system of linear equations is said to be consistent if the system has only
one (i.e. unique) solution or it has infinitely many solutions.

(b) A system of linear equations is said to be inconsistent if the system has no
solution.
Consider the following three systems of linear equations in three

variables.

2x+2y-z=4

x—=2y+z=2 (D
x+y=0

xX—-2y+z =2

—x—y+2z=1 (1I)

x—=5y+4z=35




—2x4+5y—4z=-2
x—-4y-z= 5

We solve these systems now by performing the elementary row operations on the
augmented matrices of these systems to reduce them to (row) echelon form.

(IID)

(1) Consider system (I). the augmented matrix of the systems is

2 2 -1| 4 1 -2 1] 2
[41B]=|1 -2 1| 2| R[2 2 -1| 4| byR, &R,
1 1 0| 0O 1 1 00
1 -2 1 2
R|0 6 -3| 0| byRa-2R,
1 1 of o
1 -2 1] 2
R0 6 -3/ 6 [ byR;-R,
0 3 -1l -2
1 BT | 2]
R(0O 6-3| 0| by-2R,
0 -6 2| 4
1 -2 1] 2]
R|0 6 -3| 0| byR,+R,
0 0 -1 4]

The system (1) is reduced to equivalent system,

X —2y+z=2 (i)

EI 6y —3z=0 (i)
—z=4 (iit)

The system is now in triangular form. In this form the system can be easily

solved. By equation (iii) we get z = —4.

Remember

Substituting the value of z in equation (ii) we get y = 2.

Now substituting the values of y and z in equation (i), we get x = 2. Thus the
solution of the system is x= 2, y = -2 and z = —4. Since the system has a solution,




so it is consistent.
(ii)  Consider system (II). The augmented matrix of the system is

i -2 001 2
-1 -1 21 1
Ll -5 4 5_
1 -2 1] 2] [t -2 1] 2]
then|-1 -1 2 | 1[R|0 -3 3 3{byR,+R,and R,—R,
1 -5 41 5} |0 -3 3] 3]
=2, 1| 2]
RO -3 3| 3 byR,~R,
0 0 0] 0
=2 T O
R[0 -1 1] 1|by —31- R,.
¢ 0 0] 0
The system (II) is reduced to the equivalent system
X-2y+z=2 (i)
-y +z=1 (ii)
0z=0 (1ii)
Equation (iii) is obviously satisfied for all choices of z. Equations (i) and (ii) yield
x=2+2y-—z (iv)
y=z-1 (v)

Since z is arbitrary, from equations (iv) and (v) we can find infinitely
many values of x and y. This is equivalent to saying that the system has infinitely
many solutions. Thus the system is consistent.

3) Consider system (III). The augmented matrix of the system is

1-2 3| 1 14520 3 1 22" 3l
2 5-4| -2 |then{-2 5 -4| -2 |R[0 1 2]0
1-4 -1 5 1-4 -1 5 0 -2 -4|4

byR,+2R,and R,-R,
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0 0 4
The system (I} is reduced to the equivalent system
x-2y+3z=1 (@
y +2z=0 (ii)
0z=4 (ii)

We see that the equation (iii) has no solution. Therefore, this system of

equations has no solution. Hence the system is inconsistent.
From the above, we note that the system of linear equations may have no solution,

have only one solution, or have infinitely many solutions.

2.6.4 Solution of a non-homogeneous linear equations
A system of non-homogeneous linear equations may be solved by using

the following methods.

(a)  Matrix Inversion Method i.e. AX=B =X=A"'B
(b)  Gauss Elimination Method (echelon form)

(c) Gauss-Jordan Method (reduced echelon form)
(d) Cramer’s Rule.

(a) Matrix Inversion Method
Consider the following system of three non-homogeneous linear equations

in three variables x,, x, and x;.
a,. X, +apX, + 0 X = k,
Ay X+ ApXy + 0y X = k,
% + %, +aypX; =k
This system is equivalent to the matrix equation.

a4 Gy G |5 k,
a, ayl|x|=|k |or AX=8, where

ax
4 G Oy]l% ky

a, a; & X k,
A=|ay, ap an X =|x, land B=|k, |.

a;, Gy 085 X k,




If A is non-singular, then A ™' exists. We have
AX=B=>A"(AX)=A"B=(A'A)X =A'B=IX = A"B=> X =A"B.

Thus the matrix of variables is now determined as the product of A" B.

The method discussed above for finding the solution of a system of
non—homogenous linear equations is known as matrix inversion method.
Example 14: Solve the system of equations by matrix inversion method

5—=2x+x, =2
2x,+2x,—x,=4
X +x =0

Solution: Since
1 -2 i IS ] 0 1 0 ¢l
1Al=2 2 —ll=—2 2 -1l=-[2 ~0 -1~1‘
1101—21-1—31r

So, A~ exists.

Au AZI AJI DidY K
PETRLY plyi) CICTTR— )

=3#0,

|A' |A| rThe matnxunverslowmethod for solvmg'
3 An Ay a system of non- homog,eneous linear |
1 1.0 mquatlons is applicable only ‘when the
1 |coefﬁc:ent matrix A is non-singular i.e.
=y -l 3 HATEs 10 i S el e
0 -3 6
1_ I 1 012
“But X =A"B,s0 X=§ -1 -1 3|{4
| 0 -3 6|0
1V1x2+1x4+0x0- : 6 2
=§ —Ix2-1x4+3%0 '—'5 -6 |=| -2 4
| 0X2-3x446x0 -12 -4
X, 2

thatis | x, |=| -2 |. Thusx,=2,x,=-2 and X, =—4 .
X —4| Which is the solution of the given system.




Gauss elimination method (Echelon form)
We are already familiar with the method of reducing the augmented
matrix of a system of non-homogeneous linear equations to echelon form. We
now apply this method to find the solution of a system of non-homogeneous
linear equations. The procedure is called Gauss Elimination Method (Echelon
Form). '

Example 15: Solve the following system by the method of echelon form.

2%+ 2x, —x, =4

X — 2% +x =2

X kA x, =0
Solution: The augmented matrix of the given system is

2 2 -1| 4]

1 -2 1| 2|. By2.6.3 (i) the echelon form of this matrix is
11 0l 0]
1 -2 1| 2]

0 6 -3| 0
0 0 -1 4]

From R;,we have X:=-4,

From R,,we have 6x,-3x,=0

Substituting X; =—4, in this equation we get X;=-2.

From R,,we have x,—-2x,tx;=2

Now putting x,=-2 and x; =—4 we obtainx, =2

Thus x; =2, x; = -2, x3 = —4 is the solution of the given system.

(¢) Gauss-Jordan Method (Reduced Echelon Form)
Consider system of equations in example 14 above and “ue «.aelon form
1 -2 1 2

0 6 -3 0] ofits augmented matrix.

0 0 -1 4

Mathematics-XI 4R



_ 1 -2 1] 2
Wereduce thematrix |0 6 —3| 0] to reduced (row) echelon form, that is
0 0 -1 4
[ ol
RS, ET |1, 5] Sl M |l 1
0 6 -3|0{&lo 1 -1| o |by< R, andCDR,
0 0 -1} 4 2 6
= 0 0 1| 4
1 -2 0] 6 ] ]
2lo 1 0 -2{byR~R, and R,+_R,
0 0 1 —4] T
1 0 0| 2]

£
o
rd
[v=ry
o
|
(&)

by R, +2R,

The equivalent system in the reduced (row) echelon form is -
xl =2? xz =_2|x3 =--4-

which is the solution of the given system. The procedure illustrated above of

transforming a system of non—-homogeneous linear equations into an equivalent

system in the reduced (row) echelon form is called the Gauss—-Jordan Method
(reduced echelon form).

(d) Cramer’s Rule

Consider the following system of three Did You Knew ﬂ
non-homogeneous linear equations in three b

variables. Like matrix inversionmethod,

' + + =k | the Cramer’s rule is also
fuh Tk Bt lnpphcable only when iAl#0
ayX +tapk tapx =k (1) Cramer’s rule is simpler than

a, X, +a,x, +a,x, =k, Imatnx ‘method for ﬁndlng

soluuon of the glven system y

which is equivalent to the matrix equation
AX=B {2)

:

i




where A=|{a,,

a, 4, a;

X

a,, ay|.X=|x,|and B=|k, |

Allkl + A2|k2 + Aﬂlk3
LV Ak + Ak + Ak,
Aﬂkl + A?sz + A'33k3

a4, 4y 4y X
If 1Al20, then A~ exists and (2) can be written as X = A™'B.
Since A= —I%ade ,wehave X =A"'B=
A A Ak
=‘|I| A, Ay Ay k, =|A|
A, Ay Aylk
_A“kl + Allkz + ‘%lk:‘ -
o 1Al
that iS xz - AIZkl + Allkz + A’.!ZkS
lAI '
B | gk + Ak, + Ak,
| 1A}
k, g, a
k, a,, a5
Thus x = kA; kA, +H A, ky @y dy|
lAI |4
a, k a;
a, k, ay
X, = kA, + KAy kA, |9y ky a
LAl |4
a, a, k
a, a, k
x = kAs+kAs+ A, _ [0 % ks _
| Al |A]

This method of finding the solution of the system is called Cramer’s Rule.




Example 16: Use Cramer’s rule to solve the following system.

= 201 5, =1
’7tl+2\‘.,—x3 =4,
Xp b, =0
1 -2 |1
Solution: We have AR 2 "21=3 ;t,_O
1 BTy, (O
kl ay, 4 L =2a )
k'! a')z aza 4 2 ""l
k, a, Ol 0
Now .y =t 2 T:l el 3 ; {Expanding by third row)
2 1
4 -1
= = E =
3 3
O A TR ()
ay k, ai| |2 4=}  We observe that
T | el ' the solution of
x, == |;| 2 s (Expanding by third row) thl:t g‘:;“ bsystem '
obtain y any -
2 1 t of the above four
imethods are the
4 -1 -6 _ same. -
— S — =t | A e
3 3
ay a, k| |1 - ) I -3 2 . n
a, ay k| |2 2 2dp! {4 (E);pandmg by
wllal gl [T off %010 2™ Column)
and x, = |A = 3 = 3
‘2 4
=3————l 0 =4 g
3

Thus x, =2,x, =-2and x;, =—4 1is the solution of the given system.
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1. Solve the following system of equations by matrix inversion method.
{i) 4x—3y+z=11 (1) x+y+z =1
c2x+y—4z=~1 x+y—-2z2=3
x+2y-—2z=1 2x+y+z=2
2 Solve the following system of equations by the Gauss elimination method
and Gauss-Jordan method.

(i) x—y+4z =4 (i) 2x+4y—z =0
2x+2y—z =2 x=2y-—2z &=2
3x—-2y+3z=-3 —Sx-8y+3z=-2

2 Use Cramer’s rule to solve the following system of equations,

(i) x=2y=—4 (i) x—-y+2z =10
Ix+y=-5 2x+y-2z=-4
2x+z=-1 Ixty+z =7

4, Solve the following system of homogeneous equations.

(i) x-x,+x, =0 () x,+x,+2x, =0
X, +2x,-x, =0 —2x+x,-x, =0
2x,+x,+3x, =0 —-x,+3x,+4x, =0

5! For what value of 4, the following system of homogeneous equations has

a non-trivial solution. Solve the system.
X, +5x,+3x,; =0
S5x,+x,-Ax, =0
x, +2x,+ Ax, =0

| Solutions of Systems of Equations

g
i

.,
One Solution No Solution infinita solutions
Intersect at 1 point Parallel Lines Same Line

Consistant Indepandent Inconsistent Consistent Dependent




4 -5 -
2, Compute the product| 6 -1 [ 6 1:\ — .
0

1. Choose the correct options

Ta-5b 3c
(i) § 1 = 0, then which one of the following is correct?
) l4a+3c=5b (h) 14a-3c=5b
(c) l4a+3c=10b (dy 14a+10b=3c

a; A, ap;
i) IfA=|a, a, ay|andA;is the cofactor of a; in A. Then the
dy 83 2y
value of | A| is given by
(1) ay Az + 8 Ay + 253 Ay (B)ay Ay +8p Ay + 83 Ay
(clay Ay +an Ap+an A (d)ay; Ay +a Ay + 8y Ay

IR
(i) IfA= [2 a:l and lA"I =125 then the value of a is

(a)x1 (b) £ 2 (c)£3 (d)£5
(iv) If |A| =47, then find | A'|
(a)-47 (b 47 ()0 (d) Cannot be determined
(v)  Ifdet(A)=S5, then find det (15A) where A is of order 2x2.
(21225 {(b)75 (1375 © (d) 1125

3.0
(vi) HA= i , then find A", { where n € N)

B Mo TR a0 O
i 1 )
0 3 ORI e | OFBLL B = 222

=5 ieala 185

-2 1

1 2 2
3, Provethuat A=|2 1 2 | satisfies A* -44-57=0.
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2 1553 4 0 =1
4. ¥ A=|0 4 6landB=| 2 0O 3| . Find |2A—B=|
7 2 1 =3[l g) 4 )

5. Using properties of determinants, prove that
a*+2a 2a+1 1
2a+1 a+2 1 =(a-1) ‘
e 3 3 1 : ‘g@
i

31 -1
]fA=[ ] then show that AA" andAAarebomsyr‘gx%Emc.

2

01 2 R4
2 N
4 3 3 _ o Y
i A<
7. IfA=|-1 0 -—1|,provethat A=A @V
4 -4 -3 ,@;&

o

4 3 G
A= [_2 J, then find A+10A 1&}

9. Solvethesystem X+ y+z= 4
2x-3y + z= ‘f ag
—-x+ 2y z =-1
by using the following methods
(i) Matrix Inversion (i) Gauss Elimination
(iii) Gauss Jordan  (iv) Cramer’s Rule

| Elementary row operations:

A. interchange of two rows

'123ﬂ ER
2123)
|5 51 0] 1 23

2. multiplication of a row by a non-zero number

123 4] 1
21233 6
551 0] | 5

3 addltlmolanuuipleolmemlomdlerm.w

1 1 2
)-2 2
i ! | 7 9

[}

—_

[
oo D
L )

o N

-t
(=2 - I ) ’
L M

-
-
[ IRV
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Def ine a scalar and a vector

Give geometrical representation of a vector.
Give the following fundamental definitions using geometrical representation.
e magnitude of a vector,

e equal vectors,

» negative of a vector,

e unit veclor,

e zero/null vector,

e position vector,

e parallel vectors, -

e addition and subtraction of vectors,

o triangle, parallelogram and polygon laws of addition,

e scalar multiplication.
Represent a vector in a Cartesian plane by defining fundamental unit

vectors j and j.

Recognize all above definitions using analytical representation.

Find a unit vector in the direction of another given vector.

Find the position vector of a point which divides the line segment joining
two peints in a given ratio.

Use vectors to prove simple theorems of descriptive geometry.

Recognize rectangular coordinate system in space.

Define unit vectors f, jand k.

Recognize components of a vector.

Give analytic representation of a vector.

Find magnitude of a vector.

Repeat all fundamental definitions for vectors in space which, in the plane,
have already been discussed.

State and prove

¢ commutative law for vector addition.

» associative law for vector addition.
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Prove that:

# 0 as the identity for vector addition. |
» —A as the inverse for A .

State and prove: ‘
s commutative law for scalar multiplication, |
e associative law for scalar multiplication, |
e distributive laws for scalar multiplication.

Define dot or scalar product of two vectors and give its geometrical interpretation.
Prove that.

o iizjj=kk=1,

o ij=jik=ki=0

Express dot product in terms of components.

Find the condition for crthogonality of two vectors.

Prove the commutative and distributive laws for dot product.

Explain direction cosines and direction ratios of a vector,

Prove that the sum of the squares of direction cosines is unity.

Use dot product to find the angle between two vectors.,

Find the projection of a vector along another vector.

Find the work done by a constant force in moving an cbject along a given vector.
Define cross or vector product of two vectors and give its geometrical interpretation.
Prove that;

o ixi=jxj=kxk=0,

o IXj=—jxi=k

o jxk==kxj=i|

o kxi=—ixk=].

Express cross product in terms of components.

Prove that the magnitude of A X B represents the area of a parallelogram with
adjacent sides A and B . '
Find ihe condition for parallelism of two non-zero vectors.

Prove that AX B=-B X A.

Prove the distributive laws for cross product.

Use cross product to find the angle between two vectors.

Find the vector moment of a given force about a given point.

Define scalar triple product of vectors.
Express scalar triple product of vectors in terms of components (determinantal form).

Prove that:

o IXk=jkxi=kixj=1,

o ikxj=jixk=kjxi=—I.

Prove that dot and cross are inter-changeable in scalar triple product.

Find the volume of

e 2 parallelepiped,

# atetrahedron, determined by three given vectors.

Define coplanar vectors and find the condition for coplanarity of three vectors.

'Mamematiéjs—.XI__l
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3.1 Introduction

Physical quantities such as mass, temperature and work are measured by
numbers referred to some chosen unit. These numbers are called scalars. Scalars
being just numbers, can therefore be added, subtracted, multiplied and divided by
using the fundamental laws of elementary algebra.

Other quantities exist such as displacement, velocity, acceleration and
force, which require for their complete specification a direction as well as a scalar.
These quantities are called vectors and may be represented by a straight line with
an arrow. Vectors cannot be added, subtracted, multiplied or divided by ordinary
mathematical rules but we use methods of vector addition (triangle rule or
parallelogram rule) or other analytical methods for their multiplication, for this
purpose.

Vectors have many applications in Geometry, Physics and Engineering.
We begin with geometrical interpretation of a vector. However, in the sequel we
shall apply vector methods to prove some fundamental results of descriptive

geometry.

3.1.1 Scalar and Vector

Scalar Quantity: A quantity which has only magnitude and no direction is called
a scalar quantity or simply a scalar.

Examples of scalar are mass, temperature, volume, work etc.

Vector Quantity: A quantity which has magnitude as well as direction is called a
vector quantity or simply a vector.
Examples of vector are displacement, velocity, acceleration, force elc.

3.1.2 Geometrical representation of a vector
A vector is geometrically represented by an arrow or directed line segment

say OP , where the arrow indicates the direction of the vector and the length of the
arrow specifies, on appropriate scale, the magnitude of the vector. The tail end O
of the arrow is called its origin or initial point and the head (tip) P is called the
terminal point or terminus (Figure 3.1)

Terminal Point L

In printed work, it is usual to denote all vectors by i / P
bold faced letiers a, b, v etc. In hand written work, the OP/

vectors are denoted by @, &, ¥ etc. The other notation ﬁal point
used for vectoris g, b, v etc. Figure 3.1




3.1.3 Fundamentals of a vector

(i) Magnitude of a vector — A
The magnitude or modulus of a vector 0A or a is the OP =

length of the line segment representing the vector to

the scale used. The magnitude of the vector 04 0] Figure 3.2

is denoted by 0Al, lal, lal or a.

(ii) Equal vector

Two vectors a and b are said to be equal if they have
the same magnitude and direction regardless of the .
position of their initial point. Symbolically, we write b

a = b (Figure 3.3) Figure 3.3

(iii) Negative of a vector

A vector having the same magnitude as another
vector @ but opposite in direction is called negative of a
vector and is denoted by —a as shown in (Figure 3.4)

(iv)  Zero vector or null vector F‘“‘“’“ 34

A vector which has zero magnitude and arbltrary direction is called the zero
vector or null vector. Zero vector is denoted by Q, 0 or 0

(v) Unit vector

A vector whose magnitude is one is called unit vector. It is used to represent
the dlrecnon of a vector. A unit vector is denoted by a letter with a hat over it, such

asa b v ete. Any vector & can be written in terms of unit vector as @ = lala

Hence unit vector in the direction of a is obtained as a = I
la

Vector in that direction
Modulus of the vector

i.e. unit vector in a direction =

(vi)  Parallel vectors
Two vectors @ and b are parallel if and only if a = ab,
where a is scalar. See for example (Figure 3.5)




(vii) Position Vector
A vector which joins a given point P in the plane or space with the origin is called

position vector of the point P and is denoted by op (Figure 3.6).

The magnitude of the position vector is equal to the 1Y
distance between the given point and the origin and whose 6‘5 ;
direction is the direction of the point from the origin.
T X

Ol Figure 3.6

Example 1: Using graph paper, draw the vectors. por
(1) 2a (b) —a 2=1(c) %a

where a is given in (Figure 3.7) = N (O
Solution: (a) The head of the vector a from its | B
end point is 4 squares to the right and 2 squares £ foj %)
up. Hence 2a is 8 squares to the right and 4 squares [
up. Figure 3.7

(b) —a is the negative of a, so its direction is opposite to a. Hence —a is 4 squares to
the left and 2 squares down from its end point.

(c) a is 3 squares to the right and 1 and a half squares up as shown in (Figure 3.7).

Example 2: In Figure 3.8, vectors a, p, q, r, s are

shown. State each of the vectors p, ¢, r and s in the ’ I /
form ka. £¥ 4
Solution: The direction of a is 2 squares to the right 7 7 /s
and 4 squares up. 1TV Vi /

1 i 7
Hence p=-a,q=-a

3
f=2a.3=_a f
2 Figure 3.8

Example 3: What type of quadrilateral is ABCD, if (i) AB=CD ii. AB= 3CD

Solution: (i) AB =CD means that AB and CD are ) yD
equal in length i.e. |ABI=ICDI and AB i CD. Hence
ABCD is a parallelogram as shown in(Figure 3,9_)//

A Figure3.9 B




(i) AB=3CD means .
IABI=3ICDIl and AB Il CD.
Hence ABCD is a trapezium as shown in(Figure 3.10.)

(viii) Addition and subtractien of vectors & : s
(a) Addition of vectors Figure 3.10 B

Any two vectors can be added by the following two laws.
e Head - to — tail or Triangle law of addition

To add two vectors @ and
b that is, to combine them into b ath
one vector, we draw them in such b
a way that the head of the first
a i N

vector coincides with the tail of
the second vector. The sum or Figure 3.11
resultant vector a+b is obtained by joining the tail of the first vector with the head

of the second vector as shown in (Figure 3.11).
We call this way of adding the vectors as Head-to-Tail or Triangle law of addition.

o Parallelogram Law of Addition C a D
If the two adjacent sides AB and AC of a

parallelogram represent the vectors a and b as
shown in (Figure 3.12), then the diagonal AD
represents the vector sum or resultant @ -+ b of
vectorsa and b. Thus AD=AB+AC=a+b A = >y
We call this way of adding the vectors as the Figure 3.12
parallelogram law of addition.

¢ Polygon Law of Addition of Vectors
The method of vector addition of two vectors can be extended to more than two
vectors. Let a, b, ¢, d be four given vectors. b d
Let O be any point and let us draw the vectors

OA = a. From the terminal point A of the
vector a, draw AB to represent vector b.
From the terminal point B, draw BC to
represent vector ¢. From the terminal point
C, draw CD to represent vector d. Join OD.
Then, from (Figure 3.13),

-



we have a+b+c+d =6A+E+l?(f+55

= 0B + BC +CD
= OC +CD [~OA+AB=0B]
=@ : ['-'ﬁ“l"“B.C::()_C:]

Thus the vector OD joining the initial point of the first vector a and the terminal
point of the last vector d represents sum of the given vectors. This method of
addition is called the polygon law of addition.

a a P
(b) Subtraction of two vectors .
The difference of two vectors a and b5, a-b -b
denoted by a - b, is the vector ¢ obtained b
by adding vector a and the negative of b, /

thatis  c=a-b=a+(-b) Figure 3.14
Thus, the difference @ — b of vectors @ and b is equal to a vector ¢ which
when added to b yields the vector a. The difference @ — b is shown in (Figure 3.14.)
(ix) Scalar multiplication
In dealing with vectors, we refer to real numbers as scalan;. If k is a scalar
and a is a vector, then the multiplication of a by &, denoted as ka, is a vector whose
magnitude is k times that of a. Thus, if
(i) k=0, then ka is the zero vector

(ii) k > 0, then a and ka are in the same direction %
a
(iii) k < 0, then @ and ka are in the opposite direction - o
For illustration, see (Figure 3.15). =< Figure 3.15

Example 4: For the vectors a and b given in (Figure 3.16 @) ,draw the vector

(i) 2a+h (ii)a-b (iii) a-2b .

Solution: The vectors are shown in I

(Figure 3.16 () ) 7 P
7 4

Y'h 2

=

a
-t
b

L1 Y

qu"_igum 3.16 @@ Figure 3.16 (b




Draw vector 2a and from the head of 2a draw b. Then use head—to-tail rule to

obtain 2z + b.
(i) Draw a followed by ~b, use triangle law of addition of vectors to obtain g - b.

(ii) Draw a followed by ~2b, use triangle law of addition of vectors to obtain a-2b.
Example 5: In AABC, AB=ga, AC = b and D is the midpoint of AB

(Figure3.17). State in terms of @, b. (i) AD (iiy DC (iii) CD

Solution: C

. — 1 == 1

1) AD = 5 AB =Ea b

(i) DC = AC -AD = b—%a A B
. -5 1 [ it >l

(i) CD=-DC = a-b Figure 3.17

Theorem. For any vector a,

(i) The zerc vector e has the property thate +a=a+o0=a

(i)  The negative vector —a of a has the property a + (-a)=a-a=0
Proof. (i) easy. :
If OA = a, we have, according to the definition of the multiplication of vectors
by scalars, AO=(~1)a Thus, a+(=1)a= OA + AO =00 =0
(i)  On account of this property, the vector (—1) ais called the negative of the

vector a, and we write —a=(=1)a A gl o

So that the relation. a+(—1)a=0, O > A

may also be re-written as a + (—a) =0 —l)___,
Figure 3.18

Vector Zero vector
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ABCDEF is a regular hexagon AB =a, BC =b
and CD =c, state the following vectors as scalar
multiple of a, b or c.

(i) DE (ii) EF (ii)FA (iv) AD (v) BE
Hint: In a regular hexagon main diagonal AD

is double the side BC and parallel to it. :

Given the vectors a and b as in Figure, draw the vectors H

@) a +2b (ii) 22— b (i) 3 - f_ AR
LA
I

I
)
EEE

InAOPQ, OP = P, OQ g , R is the midpoint of OP _ i
and 8 lies on OQ such that [OS| = 3ISQI. State in terms of r- SEE!
P and q.

(i) OR (i) PQ (iii) OS (iv) RS

OACB is a parallelogram with OA =@ and 0B = b, AC is extended to D
where |ACI = 2ICDI. Find in terms of @ and b

(i) AD (i) 0D (i) BD

OAB is a triangle with OA =a, OB =b. M is the midpoint of OA and G
lies on MB such that IMGI = % IGBI. State in terms of @ and b

() oM (i) MB (i) MG (iv) OG P

In A_QPR, the nic_i_—point of PR is M.

If OP =p and OR =r, find in terms of pand r.
(i) PR (ii) PM (iii) oM

ABCDEF is a regular hexagon and O is its centre.
* The vectors x and y are such that AB =x and BC =y.
Express in terms of x and y the vectors

AC.AO, CD and BF. c E




3.1.4 Representation of a vector in a cartesian plane y
We recall from our previous class that a rectangular
coordinate system consists of two lines xx’ and yy' drawn at
right angle to each other as shown in(Figure 3.20),are known as
coordinate axes. Their point of intersection is called origin i )
and is denoted by O. The rectangular coordinate system is also
called as Cartesian coordinate system.
The horizontal line is called x-axis with positive y
direction to the right and the vertical line is called y-axis with
positive direction upward. If P is a point in plane, it has two Figure 3.20
coordinates, one along x—axis and the other along y—axis. If the
distances along x-axis and y-axis are determined by a 4y
and b respectively, then the point P is assigned an ordered pair
of real numbers as (a,b) or P (a,b) as shown in (Figure 3.21 ) We e
call @ and b the x—coordinate and y-coordinate of P. ¥ .
The set IR? = {(a,b): a,be IR} is called the Cartesian 0« 1
plane. Thus an element (a,b) e IR? represents a point P(a,b)
which is uniquely determined by its coordinates a and b.
In this section, we use rectangular coordinate system to ¥
represent a vector in the plane. Figure 3.21
Let i denote the unit vector whose direction is along the
positive x—axis and let j denote the unit vector whose direction is along the positive
y-axis. Then every vector OP in the plane can be written uniquely in terms of the

vectors i andj as OP = r = xi + yj where x and y are scalar. See (Figure 3.22).

‘Jr' Y

v
o

P(xy) e

yi




The vector OP is called the position vector of the point P. Thus, the
position vector of any point P(x,y) is the vector OP whose initial point is the origin
‘O’ and whose terminal point is P.

Component of a Vector
In the representation of the position vector to any point P(x,y) in the plane

as OP=r=xi + ¥/, the scalars x and y are called the components of the vector r.
The component in i-direction is x, while the component in j—direction is y.

For example, if P(5,~4) be a point in the plane. Then the vector r represented by the
position vector to the point P(5,-4) is

r=xi+ 3y =5i +(4).
Thus, the i—direction component is 5 and the j—direction component is —4.
Theorem: If a and b are position vectors of points A and B respectively,
then AB =b-a
Proof: If a and b are position vectors of the points A and B respectively, then

@a=0A andb=0B (Figure 3.23) 2

Using triangle law of vector additions, we have ;
]

OA +5 =08 = AB =0F -0A /

= AB=b-a 0 a A
Figure 3.23

leample 6: Find the vector AB from the peint A (~4,6) to the point B (6,8).
Solution: The position vectors of A and B are OA =—4i + 6j and OB = 6i + &.

Therefore by the above theorem

AB =OB —OA = (6i + 8) — (i + 6) = 6i + & + 4i — 6 = 10i + 2

Vectors with initial peint not at the origin

We defined the component of a vector to be the coordinates of its terminal
point when its initial point is at the origin. Now we will find the components of a
vector whose initial point is not at the origin. -
Suppose P, (x,,,) and P»(x;,y,) are two points in the plane. Suppose OP: and OP:
be the position vectors of P; and P; as shown in (Figure 3.24).




y

Then IT,F’Z = 5?52 —51-;[ f
=i+ »n)) —(% i+3Jj) ,
= (=% i +(n=yli J
Thus the i-component is x, — x, and the j—component is ) =)
3.1.5 Algebra of Vectors
In this section we define addition, subtraction, O g
scalar multiplication, and so on, for vectors in plane. Figure3.24
Equal Vectors
Two vectors i = x;i +y,f and v = x,i + y,j are said to be equal if and only
if they have the same components that is
u=vifandonly if x, = x, and y,=y,
Example 7: Ifu = 2i + yj and v = xi —j, then find x and y.

P,(xd.) P_JFJ

Solution: u=vor2i+y=xi-j
By comparison we have x =2 and y =-/
Addition of Vectors

If u = x;i+y,jand v = x,i+y,jare two vectors, then their addition, denoted by u + v,
isdefinedas u + v = (x,+x) i + (y,+n)
Thus, to add two vectors, we add their corresponding components.
Scalar Multiplication
The multiplication of the vector u = xi + )j by a scalar k, that is ku is defined as
ku = k(xi + yj) = (kx)i + (ky)
Negative of 2 Vector
If u = xi + yj is a vector, then negative of u, denoted by —u, is defined as
—u = —(xi+ yj) = =xi - yf
Thus, if we take k = -1 in the definition of scalar multiplication, we obtain
—u that is the negative of the vector u.

Subtraction of Vector
If u=xi+yjand v = x,i + y,j are two vectors, then their difference,
denoted by u-v, is defined asu —v = (x, —x,) i + (y,— y.lj
Thus, to subtract two vectors, we subtract their corresponding components.
Example8: Ifu=3i+4jandv =4i-Jj,
Find (i) u + v (ii) 2u (ii)—y (iv) 2u-3v

Solution:
(i} u+v=(3i+4)+(4i-5)=(3+4)i+[4+(-5Nj=7i-j
(ii) 2u=2(3i+4)=(2-3)i+(24)=6i + &
(i) —v=—A4i-5)=—di-(-Sf=—4i+5
(iv)  2u—3v=2(3i+4j)=3(4i - 5j) = 6i + 8§ — 12i + 15 =—6i + 23j




Zero Vector or Null Vector

The zero vector or null vector is denoted by O and is defined as 0 = 0i + (f
Magnitude of a Vector

If u = xi + yj is a vector, its magnitude or norm or length is denoted by lul
and is defined as

lul= \/ x*+y

Example 9: If u = 2i - 3j, then find lul.

Solution:  lul=\[(2)? +(=3)* = J4+9 =413

Unit Vector

If the magnitude of the given vector u = xi + yj is 1, it is called a unit vector. That
is, # is a unit vector if lul = 1

Properties of Magnitude of a Vector

Theorem If u = xi + yj is a vector and k is a scalar, thcn

@) lul >0 (ii) lad = 0 if and only if # = 0 (zero vector)
(i)  ul=lul Gv)  lkul =t lul
Proof,

(i) hul = \/.xz +y* >0forallx and y.

(i)  lul =\/x1 +y* =0ifandonly ifx =0andy =0
- if and only if u = 0§ + Of
if and only if & = o (zero vector)

(i)  Ful=bxiogii=(—0)? +(—y) =x*+y* =l

(v)  Ma=lGois(hy)l = () +(ky) = k3 (5" +y7)

=2 JE+y? =ikl
y

3.1.6 A Unit Vector in the direction of another Vector
If u = xi + yf is a vector with magnitude lul #0, then I—Z—I is a unit vector

whose direction is the same as that of u. It is usual to denote a unit vector in the
direction of vector u by #.

Clearly any vector  can be written in terms of unit vector as u = lul &

Hence a unit vector in the direction of u is given by

Ay A xi+yf X A y
u=-— = = =

= u= = _|l+ ———
ful \/:cz-i-y2 Jx2+y' xt 4y
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Example 10: Find a unit vector in the same direction as the vector 3i-2j
Solution: Letu =3i~2f Note

LR +(_2)- =9+4 =413 The vector # is in facta
: A 3 .
Since u_ “ i unit vector, because by
J_ J_ J_ J property (iv) of magnitude
f t
Notation for Vectors in Coordinate System OA z Ve: 2 Ll
Sometimes we use the notation [x,y] or <x,y> for the | |=] Tul '=m =

vector r = xi + yj which has its initial point at the
origin of the rectangular coordinate system. The terminal point of r will have

coordinates of the form (x,y). We call these coordinates the components of r.
In this notation, the unit vectors i and j are given by =[1,0], j =[0,11.If r,=[x,,y]
and r, =[x,,y,] are vectors and k any scalar, then addition and scalar multiplication
are defined as r, + ry = [x,y,] + (0] = [ + %, ¥y + 3] and kry =k[x,,y1=[kx,. ky, ]
Using the definition of addition and scalar multiplication, the vector r = xi + yj can
be written as

r=xi+y =x[10]+y[01]=[x0] + [0y] = [xy]
Thus r=x+y =[xy]

3.1.7 Ratio Formula
Theorem: Let a and b be the position vectors of the points A and B respectively.

If C divides AB internally in the ratio p:g, then the position vector ¢ of C is given

by c =M
q+tp _,__E
Proof: If C divides the line segment AB internally in the ratio p:q, then %_E -g
as shown in the (Figure 3.25). B
Hence g AC=pCE = q(c-a)=p(b-c) : \q(:
= qc—qa=pb—pc = gc+pc=qa+pb c \P
_ _ qa+pb 0] TR " A
= (g+ple=qga+ph = c= Ty Figure 3.25

Corollary: If p: q=1: 1, then C is the midpoint of AB and its position vector ¢ is
a+b

given by c =

2




Example 11: Find the position vector of the point dividing the join of point A with
position vector 2i-3; and point B with position vector 3i+Z2j in the ratio 4:3
Solution: Suppose that the position vectors of the points A and B are @ and b
respectively. Then a=2i-3f and b=3i+2j

Suppose that ¢ is the position vector of the point C that divides the segment AB in
ratio 4:3.
Then by ratio theorem (theorem above})

_3a+4b 3(2i-3j)+43i+2j) _6i-9j+12i+8j 18i—j 18 ; 1

3+4 7 F/ 7 7 7

3.1.8 Application to Geometry
In this section, we shall use vectors to prove some basic theorems of geometry.
Theorem: Prove that the straight line joining the midpoints of the two sides of
a triangle is parallel to the third side and equal to one half of it.
Proof: Let OAB be a triangle and D.E be the midpoints of sides OA and OB
respectively (see Figure 3.26) o

Let (—)71. =a, (ﬁ =h, then
0_15 =-‘-21- s OF = % ~ D & E are the mid-points of(_)K

& OB respectively g Figure 3.26 5
Now DE =13_é +O_E" =—Cﬂ)' +5E
-a b b-a
=— 4— = I
2 2 2 M
AB =AO +0OB =—OA +OB =-a+b=b—-a )

Therefore from (1) and (2), we have

DE =—;— AB Hence DE || AB and DE is equal to one half of AB
B C

Theorem: The diagonals of a parallelogram bisect
each other.

Proof; Let the vertices of the parallelogram
be 0,A,B and C (See Figure 3.27)

Let a, b be the position vectors of A and B

respectively. 0 S A

Then OA =a, OB =b. = AN Figure 3.27
By addition of vectors, we have OC =0A +OB =a+b




The midpoint of the diagonal 0C has the position vector

o_c’ a+p
Pt e 1
2 > ()

Again by addition of vectors, we have AB =OB ~-OA =b-a
The midpoint of the diagonal AB has the position vector ‘

i |

c=

a'=5;\.+% =g +2=2 _20tb-2 _a+b @ |

2 2 2

From (1) and (2), we have c=d. |
This shows that the midpoints of the diagonal 0C and AB are the same. |
Thus the diagonals of the parallelogram bisect each other. |

3.2  Vectors in Space
Tn <ection 3.1.4 we discussed vectors in the plane.
In this section, we again consider vectors, but vectors inspace.

3.2.1 Rectangular coordinate system in space ye

In space, a rectangular coordinate system (or
Cartesian coordinate system) consists of three
mutually perpendicular lines through a common point
O. The point O is called origin and the mutually
perpendicular coordinate lines xox, yoy' and zoz' are
respectively x—, y— and z-axis (Figure 3.28). The
positive x—axis points towards the reader, the y-axis
to the right and z-axis points upwards.

The coordinate axes, taken in pair, determine three
coordinate planes namely the xy-plane, the xz— e AT
plane and the yz~plane. If the distances along x—, y— / .

and z— axes are denoted by 4, b, ¢, then the point Pis % Figure 3.29
assigned an ordered triple of real numbers as (a, b, c) z

or P(a, b, c) as shown in Figure 3.29. We call a, b and , S

c the x—coordinate, y—coordinate and z—coordinate il _ _______ ‘*'“

of P.Hence the point P whose coordinates are (4, 5, 6) §p(4.5.0);

is 4 units from O in the direction of oX. 5 units from P

O in the direction of 6y. 6 units from O in the : S
direction of oz as shown in (Figure 3.30). _m_ﬁ {2 :
The set IR*= {(a, b, c): a, b, ce IR} is called the 5

three— dimensional space (or 3—dimensional space). *
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3.2.2 Vectors in three dimensional space
Let i, j and k be three mutually perpendicular unit vectors in the direction

of coordinate axes as follows: Z

i is a unit vector along positive x—-axis, 0X

J is a unit vector along positive y-axis, oy

k is a unit vector along positive z—-axis, 0z

as shown in Figure 3.31.

If P(x, y, ) is any point in the space, then the

position vector OP of the point P can be written in
the form.

—_— A N Z
OP =r=xi+yj+zk asshowninFigure3.32. = ... -
Lol oy Fal | {

Thus, a position vector of the point P is a vector OP PR Py |
whose initial point is at the origin O and whose £ ]
terminal point is P. ol i y
3.2.3 Component of a Vector R
In the representation of the position vectorto il Figure 3.32

any point P(x, y, z) in the space as OP = r =X + yj + 2k,

the scalars x, y and z are called the components

of r. The unit vectors i, j and k are the unit base w
vectors for this coordinate system. e

3.2.4 Notation for vectors in coordinate system 1f A F, IS a vector in space with
initial point Pi{x, ¥, z) and
terminal point Fyx, ¥, Z),

As in plane, we use the notation [x, y, z/
or <x, y, z> for the vector r = xd + yj + 2k in 173
space. Then AP, = (X=X, )i+ (Y, )i +

In this notation, the unit vectors i, j and | (z,—z )k. So the components of
k are given by BP, ini, jand k directions are

i =[1,0,0],7 = [0,1,0], k = [0,0,1] (%% ) (¥;=¥; ), (23-2, ) Tespectively.
Iftr=1[x, v, 2 ] and ry=[x,, y, z,]Jare vectors
and @ any scalar, thenaddition and scalar multiplication is defined as

r+ r =[x, v 4] + [, ¥ ] = D4, v+ z,+2,] and

ar=alx,y, z]=[ax, ay, az]
Using these definitions, the vector 7 = xi+yj+zk can be written as

r =xi+yj+zk =x[1,0,0) + y[0,1,0] + 2[0,0,1]

= [x,0,0] + [0,5,0] + [0,0,2] = [x.y.Z]

Thus r=xi+y +zk = [xyz]




3.2.5 Magnitude of a Vector
The magnitude or norm or length lu#! of a vector u = x@ + yj + zk in the space

is the distance of the point P(x, y, z) from the origin. That islul=,/ 2+y +7
Unit Vector
If the magnitude of the vector u = xi + yj + zk is 1, it is called a unit vector. That is

lel=1

Example 12: Ifu=2i-j+ 3k, v=i+j -k, then find
(1) u+2v (i) 3u—2v (iii) 3(u-2v)

(iv) lu+vl (v) lulHvl (vi) E‘:—i
Solution:

() u+2v = Qij+3k)y+2(i+f—k)= 2i~j+3k +2i+2j-2k = 4itj~k
(ii) 3u—2v = 3(Q2i— 13k) =2+ —k) = 6i—3j +9k—2i~2j +2k = 4i~3f + Ik
(iii) 3(u—2v) = 3[(2i—5+3k)2(+—k)] = 3[2i~j+3k -2i-2j+2k]
= 3(0i-3j+5k) = —9j+15k
(V) vl = (2i=j+3k)+ 4~k = i+ 3h+iti-kl = |3i+0j+2Ki

= J3P+(01’+(2) =9+4 =13
™)l = J@P DG IR+ + (1)
= V4+1+9 +J1+1+1 =14 +3

wi) L _2i—j+3k 2 ; i 3 k
W T J3 B J_ Vi3
3.2.6 Algebra of Vectors

In this section we define addition, subtraction scalar multiplication etc of
vectors. Our definitions are the same as given for plane vectors except that in this
case we consider vectors in space.

Equal Vectors

Two vectors u = x,i + y,j + 2,k and v = xi +y,j + ,k are said to be equal if
and only if they have the same components.
Thatis u =vifandonly ifx, = x, yy =) and z; = 2,

Addition of Vectors
The addition of two vectors u = x,i + y,j +z,k andy = =Xx,i + . + 2,k is defined as
wAV=(x + )i+ + Rl + (g Lk

That is, to add two vectors, we add their corresponding components.
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Scalar Multiplication
| The scalar multiplication ¢ u of a vector u=xi+yj+zk by a scalar o is defined as
eu=a(d+y+zk)=(ax)i+(ayf+(ak
Negative of a Vector
The negative of a vector # = xi + yj + zk is defined as
—u=—(xi +y+2k)=—xi-yj-2k

Subtraction of a Vector

The difference of two vectors # = x,i +y,j + g,k and v = x,i +y,j +2,k is
defined as Uu—v=(x, -5+ (y,-nli+(z -k
That is, to subtract two vectors, we subtract their corresponding components.
: Zero Vector or Null Vector
! The zero vector or null vector O is defined as 0=0i +0 + 0k

. Properties of Vectors
! The following properties hold for vectors in plane as well as in space.

Let u, v and w be vectors and let « and £ be scalars, then
1) utv=v+u (commutative property for addition)
(ii) (u+v)+w=u+(v+w)  (Associative property for addition}
(ili) u+o=o0-+u=0 (Identity for vector addition)
(iv) ut-u)=o (Inverse for vector addition)
i ) a (fu) = (aPlu (Associative property for scalar multiplication)
’ (vi) «a(u+v)= o +av (Distributive property of scalar multiplication over
vector addition)
I (vil) (a+f)u=au+fu (Distributive property of vector multiplication over
scalar addition)

(viii) lu=u
Application to Geometry
‘ Distance between two points in Space

Let A(x;, 3 ;) and Blx,, 3, 2) be any two - § A\ =
points in space. Let OA4 and OB be the position Al ) \\
AR 0
vectors of A and B (Figure 3.33). Then i oS
0A=x,i-l2i j+zl_lf: OB _ifqi"')’zj +5,k B(x,.y; »zz)l
Now OA+ AB = OB
| AB=0B-0A
! = (%) |+ (Y= )f + (=2 )k o ¥
Figure 3.33

Hence | AB | = J&z—x,)2+(y2—)’l)2+(zz -z X

which is called the distance formula.




Theorem: Let A(x,, y,, z;) and B(x;, y,, z,) be any two z
points in space. The coordinate of point C which

divides AB in the ratio m,:m, are
(mr"z +'"'2x1 rnlyz +'n2yl 'nlzz +"Ezl )
m +m m, +m, my +nt,
Proof. Let C(x, y, z) divides AB in the ratio m,:m,
internally (Figure 3.34). If @ is the position vector of
A and b is the position vector of B, then the position
vector ¢ of C already found in Ratio theorem is
o mb+m,a
my +m,

X Figure 3.34

un+y+d=m+m1mgwyﬂﬁﬂywﬂwzw

1 £
_ (m,x, +m,x, Ji+(m,y, +m,y, )j +(mz, +m,z, k

m, +m,
_mx, tmx, l-+m]h+mzy| j+'nlz2+'m22! k
m +n, my +m, m,+m,

Comparing the corresponding components on both sides,

Lo MR tmN _myuhy o matmy (oo know D
m, +m, my i, m, +nt, 3 J

. X+ My, Ly, Mz, If_/1 is negative,

Thus C(x,y,2) = C(m] S E 1 : Ly the point C divides

mtm, omtm Comtm, AB externally in
the ratio A:1

=

Corollary: If 4~ A, then the point C divides AB in the
m,

ratio A: 1 and C X, ¥, 3y

- Ax + % y= Ay, + ) Z=’1|zz+z|
1+ 1+4 1+4
Theorem: Prove that the coordinates of the
centroid of a triangle ABC with vertices
(X, Y 2 ) (%20 Yoo Z2) (X5, Y3 Z) arE A B, ¥ 2y
Stmtn Wty ntnuty "™ Figure 3.35 |
3 n 3 0w 3 i |
Proof: The centroid of the triangle ABC is the point G where all the three medians
intersect each other in the ratio 2:1 (see Figure 3.35)

M
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- 2 k2= ali
The point G dividing AM in the ratio AG:GM = 2:1 has the coordinates

The midpoint M of BC has the coordinates M (22t 2%

2(x, + x;)
2
241

2(z,+2,)

+1-x, g)—’lzj--—y—:’—)-i-l-yl +l:2,

2+1 2+1

=[x|+x~z+x3 Y+Y Y, zl+zz+z3]

el [ oM Ll e

Example I3: Find the length of the median through O of the triangie OAB, where
A is the point (2, 7, —1) and B is the point (4, 1, 2)
Solution: - Let OAB be a triangle as shown in (Figure 3.36).

The coordinates of M the midpoint of AB are

(264,741 142)_ o L, R
T T2 2
So the length of OM is M
IOMI= \/(3)2 +(4)? +(%)2 . —‘/-%_91 e
2 . Figure 3.36 A@R7-1)

- EXERCISE 3.2

I.  Ifa=3i-5 andb=-2i +3, then find
(i) a+2b (i) 3a-2b (iii) 2(a~b)
(V) lasbl () bbbl (i) 2

2’ Find the unit vector having the same direction as the vector given below.
()3 (i) 3i -4 (iii) i+ j— 2k (iv) -‘-gi- -;-j

3 fr=i-9%,a=i+2jand b= 5i-j, determine the real numbers p and ¢
such that r = pa + gb.

4, If p = 2i —j and g = xi + 3j, then find the value of x such that lp+ gl=35.

at, Find the length of the vector AB from the point A(-3,5) to B (7,9). Also
find a unit vector in the direction of AB .

6. If ABCD is a paralielogram such that the coordinates of the vertices A, B
and C are respectively given by (-2,-3), (I, 4) and (0, 5). Find the
coordinates of the vertex D.




1. Find the components and the magnitude of IF’Q-

L P (~,2), Q2,-). o Pi(S2ID5EQ235)!

iii. P (=1,1,2), Q:(2,-1,3). iv. P(2,4,6), Q(1,-2, 3).
8. Find the initial point P or the terminal point Q whichever is missing:

i. PQ=1-2,3], P (1,-2). ii. PQO=[4,-5],Q(-I,).

iii. PQ=[-1,3,-2], PQ2,~1,-3). iv. PO =[2, -3, 4], Q@3, -1.4).
9. If d@=i+j+k , b=4i-2j+3k and¢=i-2j+k, find a vector of

magnitude 6 units which is parallel to the vector 2a—-b +3c,

10. Find the position vector of a point R which divides the line joining the points
whose position vectors are P(i + 2j —k) and Q(—i + j + k) in the ratio 2:1
internally and externally.

11.  Find the position vectors of the point of division of the line segments joining

(i) Point C with position vector 5 j and point D with position vector
4i +j in the ratio 2 : 5 internally.

(i1) Point E with position vector 2i-3j and point F with position vector
3i+2J in the ratio 4 : 3 externally.

12.  Find a, so that lai + (a + 1)j + 2k| =3

13.  Mi=2i+3j+4k,v=—i+3] =k and w=i +6]+zk represent the sides of
a triangle. Find the value of z.

14.  The position vectors of the points A, B, C and D are2i — j+k, 3i+ ],
2i +4j—2kand—i =2 +k respectively. Show that AB is parallel to CD.

3.5 Dot or Scalar Product

3.5.1 The dot or scalar product of two vectors a, b denoted by
a-b, is defined as a-b=lallbl cos 0 where 0 is the angle 5
between the vectors a and b (Figure 3.37).

For example, if lal = 2, bl = 4, 68 = 60°, 0

v

a

then a-b=3x4cos60° = 12x L =6.
2 Figure 3.37

This will be negative if %<9< T as cos @ is negative, and lal, Ib| are always

positive.




Unit 3 | Veetors

3.5.2 Immediate consequences of the definition of Dot Pmduct

(i) Parallel vectors

If @ and b are parallel but in the same direction as
shown in (Figure 3.38), then &= 0°.

In this case a-b = laliblcos0° = lallbl

A 2

b
Figure 3.38

If @ and b are parallel but in opposite direction as shown in Figure (3.39),
then 8=180°. In this case a-b =lalibi cos 180° = —lallbl

In the special case when a = b, then
= lallalcas0® = lallal = lal®

Hence lal=a-a
(i) Orthogonal vectors

If @ and b are orthogonal vectors, then & =90° and co
o a-b=gp| cos90°=0 |
Hence the condition for orthogonality of (wo vectors is a-b = 0

3.5.3 Scalar product of unit vectors i, j and k
ii=li|fi| cos0°=1,ij=li||i| cos90°=0

i =il cos 0° = I, jok = |j| k| cos 90°=0 b
Ik =k} cos 0°= 1, ki = [K| | cos 90°=0

e

-
.y

b
Figure 3:39

s 90°=0

L

0

—

\
>

a

Figure 3.40

™mw

t is always a number

the scalar product or inner product.

2
l k : { Remembor
QLSS . Tty The dot produc
J (scalar). We sometimes refer to it as
]
Figure 3.41

X

Thus, ii=jj=kk=1 and ij=jk=ki=0




3.5.4 Expression of Dot Product in Terms of Components
Remember

Leta=xi+yj+z,k and b=x,i+nj+nk
be two vectors in space. Then using the properties of ¢, — x,i +y,j and b= x,i + 3
dot product, we have are vectors in the plane,
th b = + ¥y
ab = (xji+yj+yk)-(x i+, j+2k) s s
= X, X, () + X, ¥y (1) +x, 2, (k) + ¥, %, G0) + ¥y, Gf) +y,2.0:k)
+ 7, x, (ki) + 2,y (kj) + 2,2, (k)= x, X, +¥,¥2+ 2,2,
ab=xx, +y,¥2+2,2
Thus, dot product of two vectors is the sum of the product of their corresponding

components.
Example 14: Ifa = 2i-3j + 4k and b = i+3j-2k, then find a@.b in terms of their

components.
Solution: a.b (2i - 3f + 4k} (i + 3j —2k)
(2) (1) + (-3)3) + (4)(=2)= - 15
355 Commutative and Distributive Properties of Dot Product
Theorem: If @, b, and ¢ are vectors and o any scalar, then
(a) Dot product is commutative i.e. a:b = b-a
(b) Dot product is distributive over vecior addition i.e. a-(b + ¢) =a-b +a-c

Proof:
(a) Leta=xi+yj+zk andb=x,i+y,j+z, Kk
Using the properties of dot product and scalars, we have

a-b = (xli+y,j+z,k).(x2i+y2j+z2k)
= X X+ M0 42 =L TNRNTLY
= b-a

Thus, g-b=b-a
()] Let ¢ = x,i+y4 +2;k then
a-(b+c)=(xli+ylj+z,k).[(x2i+y2j+zzk)+(x3i+y3j+zjk)]
= (xli+y,j+z,k).[(x2+:c3)i+(yz+y,1i+(zz+z3)k]
= X (Xy+x;) + Y, (¥ +Y3) +2(22+25)
= x1x2+x,x3+y,y2+y,y3+z,z2+z,23
= (x,x2+)'|y2+z]z2)+(x1x3+y|y3+z|z3)= ab+a.c

Thus, a-(b+c)=a-b+a-c

04




3.5.6 Direction Angles and Direction Cosines of Vectors
Let r=xi+yj+zk be a non-zero vector. Let a, / and ¥ be the angles which

the vector r makes with the positive directions of the coordinate axes where each
of these angles lies between Oandnie. O @, #,y< w.

The angles &, f and y are called the direction angles of the vector r

(see Figure 3.42).

Referring to the figure, we have three right triangles ?.
OAP, OBP and OCP. Then C
v

cos@ =X = ——" —__ inright triangle OAP 4 i

bl +y 4 2 r

: j ﬂ —
R y e . & B~
cos = - = —=——u ip right triangle OBP
ﬂ Il ’xz + \:2 + ZI & fang X A

cosY =2 = 5 Figure 3.42

—===—=——==-In right triangle OCP
The numbers cos &, cos # and cos y are called the direction cosines of the vector
r. The direction cosines cos&, cos f# and cosy are usually denoted by 1, m and n
respectively.
Theorem: If @, fand vy are the direction angles of a vector r, then

cos? & +cos? fJ+cos?y =1.
Proeft By the definition of direction cosines of the vector r, we have

x v z
COS & = ===, 008 f=——=——-oc— and cOSY =
1 il 1 ) I 2 a 2 2
\/.t'+y'+z‘ \/x'+y“+z \Ix +yv +z
_‘_2 2 z?
. cos? & +cos? [ +cosZy = : Ll +

Pyt +_1:2+y2+zz Xyt

Xy e+
Using symbols ¢,m and n, we may write the above result in the form ¢Z+m?+n2=1
Example 15: Find the direction cosines of the vector from P(4,8,-3) to Q(-1,6,2)

Selutien: We know that for any two points P and Q we have PQ =00~ 0P

=1

Here OQ =-i+6j+2k OP =4i+8j-3k
PO = (-i+6j+2k)~(4i+8j-3k) = —5i-2j+5k




W e ey o | R L =y ==
Since IPQ | = x*+y*+2

So 1PQ1 =+J(=57+(=27+(5) = V54 =36
Hence direction cosines of the vector PQ are
x -2
cose = 50 F cosﬂ—lPQI S andcosy—”)Q| 3J_
3.5,7 Direction Numbers or Direction Ratios
. The position vector OP of the point P(x,,2) in term of unit vectors ij and k
is given as

OP =r = xi+yj+zk
If cos ¢, cos B and cosy are the direction cosines of r, and p is a positive
constant, then the numbers Pcosa , Pcos § and Pcosy are called the dimection

numbers or direction ratios of the vector r. The direction numbcrs are used to
specify the direction of the vector r.
Since x = Irlcos &, y = Iricos # and z = Irlcosy where Irl is the length of the

vector r, so x, y and z are direction numbers of the vector r. Therefore the
coordinates of P(x,y,z) may be written as (lricos &, Irlcos £, Iricosy)

Hence OP =r =Iricosai + Iricos Bj + Iricosr k
=  OP=lIrl(cosai+ cos fj + cosyk) or

= Il (li+mj+nk) . s

Example 16: Find the direction numbers and direction  From the above, we

. . N\ obtain the components of
cosines of the point P(2,-3,6). e e o
Selutien: The direction numbers are 2, -3, 6. cosines multiplying by

L. i Irl.
Since OP = r = 2i — 3j + 6k, |OP =7, therefore the  cgnyersely, dividing the
direction cosines are components by Irl gives
- the direction cosines.

f=Tx:—=%-m=Ty:=—§aﬂdﬂ= - =2

|OP! op1 7 opi 7

Example 17: Find the coordinates of P, if 0P is of length 6 units in the direction

of OR where R is the point (2, -1, 4)
Sobufion:  Wehave OR=2i—j+4k .  10Rl= V21




Unit 3 | Vectors

The direction cosines of OR are = R(2-1.4)

2 -1 4
£= ,m= y 1= —== e
V21 V21 V21 daies

The coordinates of P are (Irl#, lrim, Irin)

where Irl=l OF | = 6.
Therefore Irt ¢ = r =6 24

—=, Irlm =—=, Irln =——

V21 V21 Ji_l

Hence the coordinates of P are (——
it

Example 18: A vector v has inclination 60° to ox, 45° to oy,

Figure 3.43

Find its inclination to 0z If vl=12, express v as xi + yj + zk.

Solution: Here [ =cos 60":-:];; , M= cos 45° = _J.l=

2
Let n = cosy, where 7is inclination to 67"

Since P+m2+n? =1 |

So n? =1-1m = naW- — - S=l

= n =%

N

This shows that v is inclined to 57 either at 60“ or 1'70".

T A
Now £i, mj, nk are components of v,s0 v = —]-z 42l Jj+ k

=

Butv =l 12(_;+T,+ lp-= 6z+6f1+6k

358 Angle between two Vectors
One use of the dot product is to calculate the angle between two vectors,
(i) Let @ and b be the two vectors. Then by definition of dot product

= |afb|cos & where 0 <9<

a.
5. Cosf = s

okl i
i.e. the cosine of the angle between two vectors is their dot product
divided by the product of their moduli.

L =
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(ii) lfa—xl+y,_]+z,kandb x,i+y,j+z,k

a-b=xx,+y,y,+2,2,
lof = \/-": +y +7 and | = J* + s +2; since by (i) above
cos 9= &b . cosf= X%+ Yide 4

|a||b| \/;cl +yl +3 \/;1 +yz +Zz

Gii)  a.b = |a]lp| cos 8 cosa—m—la—l b a.b igure3 44

Example 19: Find the angle between the vectors OPand 00 where JP =2i+j,

00 =-3i + 2j
Solution: Let 6 be the angle between "AY

the vectors OP and 0Q

_ 0P.0Q Y
Then cos @ = e 3+ %
OP OQ 3. I i i i 3 zifj

LI OI L ] L L] i * X
_ (3i+2§).2i+)) Figure 3.45
\/32+22\/22+12
= Cosf = ——0 4961
J_ ¥5
= §=119.74"

Example 20: Find the value of t such that the vectors 2i —j + 2k and 3i + 24 are
orthogonal.
Solution: Leta = 2i~j + 2k and b =3i+24. Ifa and b are orthogonal, then a-5=0

LA F (D2 +2AW=0 = 2t=—6ort=3
359 Projection of one Vector on another

Let a and b be two vectors and & be the angle between them as shown in
(Figure 3.46) ,0<6<=x
AC is perpendicular to OB . Then OC is cailed the projection of a on .
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= 10C1 =104 | cos 8 = laicos 8 (N
By definition of angle between vectors

cosé = 25 (2) E
lallbl \ Figure 346
Using (1) and (2), we have 10C| = -IEE.;{;

— e

. a
This gives that the projection of aon b is ;I—b? . Similarly the projection of b on a is lal

Example 21: Find the projection of the vector @ =i—2j+k to the vector b= 4i — 4j+7k.
Solufion:  The projection ofa on b = fﬁl
Now a-b = (i-2j+k). (4i—4j+7k)= (1) (4) + (=2) (—4) + (1) (7) = 19
And (b = /(4 +(<4P*+(7) = V16+16+49 =B8] =9
LY
bl 9
3.5,10 Work done by a constant force
If a constant force F acts on an object during any interval of time and the

object undergoes a displacement S, then the work done on the object by the force
F is defined as :

w=F.§
or W= FS§ Cos 6, where 8 is the angle between
the directions of F and §, as in (Figure 3.47).
Example 22: Find the work done in moving an object
along a vector 9i —j + k if the applied force is Ji + 2j + k.
Solution: Here F =3i+2j+k Figure 3.47
§=9%—-j+k
W=F-S5=(3i+2+k)- (%—j+k)
=3(9) + 3(-1} + (1)
=27-2+1
=26
Hence work done = 26 units

the projection of a on b =




EXERCISE 3.3

1. Ifa=3+4~-kb=i-j+ 3k and ¢ = 2i + j — 5k then find
() ab (ii) @ (iii) a-(b+c)
“(iv) (2a+3b)-c (v) (a-b)-c

2. Write a unit vector in the direction of the sum of the vectors
a= 2{+2}—512 andl;=2f+}—7lz
3. Find the angles between the following pairs of vectors:
(Y i-j+k, 4+j+2k ()3i+4,2j-5k (1)2i-3ki+j+k

4, Show thati + 7j + 3k is perpendicular to both i —j + 2k and 2i + j - 3k.

5. leta=i+2j+kand b =2i + j— k. Find a vector that is orthogonal to
both a and b. :

6. Leta =i+ 3j—4k and b = 2i - 3j + 5k. Find the value of m so that a+ mb
is orthogonal to (i) a (i) b

7. Given the vectors @ and b as follows:
(i) a= —%j+%k, b=i-2j-2k (i)a=-=3i+j+2k.b=—-+5k
Find in each case the projection of aon b and of b on a.

8. What is the cosine of the angle which the vector /27 + j+£ makes with
y —axis?

9. A force F = 2i + 3f + k acts through a displacement S=2i +j — k.
Find the work done.

10, Find the work done by the force F = 2i + 3j + k in the displacement of an
object from a point A(-2,1,2) to the point B(5,0,3).

[1. (i) Show that the vectors 3i=2j + k , i—3 j + Sk and 2i + j -4k form a right
triangle.(ii) Show that the set of points P = (1,0,1), @ = (1,1,1) and R={1,1,0)
form a right isosceles triangle.

12, Prove that the angle in a semicircle is a right angle.

13, Prove that perpendicular bisectors of the sides of a triangle are concurrent.
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3.6 The Cross or Vector Product of two Vectors

In section 3.5 we noticed that dot product

of two vectors in plane or in space gives a scalar. = 1" /v
However, in this section we shall see that there is L%

another product known as cross or vector product, R‘
which gives the result as vector in three
dimensional space. Figure 3.48(a)
3.6.1 Let a and b be two non-zero vectors. The
cross or vector product of @ and b, denoted as a x b, b
is defined by

axb=lallblsinfn —ny
where n is a unit vector perpendicular to the plane Figure 3.48(b)
determined by a and b (See Figure 3.48 (a)) g

The direction of » is determined by the right hand rule
“Join the tails of a, b, stretch the fingers of your right hand along the direction of
first vector @ and curl them towards the second vector b through smaller angle &
between a and b (0<@<180°), then the erected thumb will show the direction of n
ora xb.”

If a and b are as shown in (Figure 3.48 (a)). and the plane containing a, b
represents upper surface of a table then a x b is directed above the table.

Clearly, the direction of & x a by stretching fingers along b and curling

towards a gives the direction of the thumb of right hand downwards (under the
table) direction from the plane (see Figure 3.48b)).

Hence b x a =-Ibl lalsiné n
where 1 is a unit vector. perpendicular to the plane directed upward.

In Figurc 3.48(b) b x a is the scalar multiple of — 1 .
If @ and b are two vectors, then the length of a x 4 is given by la x bl = lal 15l sing

3.6.2 Immediate consequences of the definition of Cross Product

@) Since a x b = -b x a, hence vector product is not commutative i.e.
axhb #bxa.

(ii) l’aral!el Vgctm:s. Ifaandd are pargllcl but in the a
opposite direction as shown in Figure 3.49(a),
then &= 180°. P ;
In this case a x b = lal 1bl Sin180°;= 0 Figure 3.49(a)

(... sin 180°=0)




If @ and b are parallel but in the same direction as a

shown in Figure 3.49(b), then £=0°

In this case @ x b=lal bl sin 0°a4=0 (--sin0°=0) < b
Hence in either casea x b =0
If @ x b = 0, then either at least one of the vectors g, b is Figure 3.49(b)

zero or a and b are parallel.
In particular a x 0 = 0 for all vectors a.

3.6.3 Expressing Cross Product in terms of components
Let @ = x,i+y, f+z,k and b=x,i+y, j+z;7c be two vectors in space. Then using
the properties of cross product, we have
axb = (xi+yj+z2k)x(xi+ y,j+2,k)
= xx, (X )+ 0y, (1% 1)+ 5z, (k) 30 (7%0)+ 3,9, (P )+ wiz (% k)
+2,5%, (kX 1)+ 2,9, (k % j)+ 7,2, (kX k)
= 5%, (0)+ 2,3, (k) + 2.2, (=) + 3,3, (k) + 3,9, (0)+ 3,2, (i) +2%, (1) + 232 (~1) + 212, (0)
= (5~ 1Y) =02, — )i + (%), - )k (1)
The expansion of 3 x3 determinant
i j k|
X ¥ 4= (y;22 — Z;yz)i = (x;zz—z;xz)j + (xf.)’z_y.lxz)k 2
X Y % .
i j k
From (1) and (2), we have  axb=|x, y, gz
X2 Y2 %
3.6.4 Application to Geometry

- Theorem: Prove that the magnitude of ax b
represents the area of a parallelogram with adjacent b ﬁ

sides a and b.
Proof: Let a and b be two non-zero vectors |6

representing the two adjacent sides of the ; bhsind -
parallelogram and & be the angle between them as

shown in Figure 3.50. We know from geometry that o=~ E fal "
Area of parallelogram = base x altitude Figure 3.50

= lal Ibl sin @ = la x bl
Thus Area of parallelogram = la x bl
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Theorem: Prove that the area of a triangle _Hy:;. -------------------------------- :

equals -;- laxbl
Proof: From Figure 3.51, we have that

area of triangle = % (area of parallelogram).
o *

, . Figure3sl
Area of parallelogram =la xb1 .. Area of triangle = = laxb)

By above theorem

where a and b are vectors along the two adjacent sides of the triangle.

Example 23: Find the area of the triangle whose vertices are A(2,2,0),
B(-1,0,2) and C(0.4,3).
Solution: Let AB and AC be the adjacent sides of the parallelogram determined,

s0 the required area of the triangle is half the area of the parallelogram, that is

—  —
Area of the triangle = % ABXx ACI

Since AB = (=1.0,2)—(22,0) = (=3,-2,2) and
AC = (04.3) - (2,2,0)=(=2,2,3),

O L A -
s0o AB x AC = |-3 =2 2| =-10i + 5 ~10k
20N 3

= [ABx AC|= =100+ (57+ (=10 = V225 = 15

Area of the triangle = —% A—ﬁx AE = _155_

L
3.6.5. Scalar triple product of i;j and k 'jf
By applying the definition of cross product to unit vectors E

i, j and k, we have
(a) ixi=lllil sin0°n =0

JxJ =l ljl sin0°n =0 ghel, & _,,
kx k =kl Ikl sin0°n =0 !

(d) i xj=lilljl sin90% = k i
J sk =)jl el 5in90% = i Figure 3.52

kx i =kl sin90% = j x




() Jjxi=—(ixj)=-k
kxj =—( xky=—i
i xk == (kx i) =

Thus
ixi=jxj=kxk=0
ixj=kjxk=0Lkxi=j
Jxi==k kxj=—i,i xk==f e
For convenience we arrange unit vectors i,j,k in
clockwise order as shown in Figure 3.53. Then the cross !
product of any two consecutive vectors is the remaining third |
vector with a plus sign or a minus sign according as the order \ /
of the product is clockwise or anticlockwise. '
3.6.6 Anticommutative Property
Theorem: If a, b are vectors, then
axb=-bxa
Proof:
This property has already been proved geometrically. Analytically we prove it as
follows.
Leta=xi+yj+zk b=x)i+y,j+ 2,k
i j k i j k

Figure 3.53

axb=|x, y, z| =-|x, y, z)] (byinterchanging the rows of the determinant)
X2 V2 & N g
=-bxa
Thus axb =-bxa

Ifa=0orb=0orsinf=0, thenclearlyax b =0
3.6.7 Distributive Property
Theorem: Ifa, b and c are vectors, then

Q) (a+b)xc=axc+bxc (i) ax(+c)=axb+axc
Proof:
(i) Leta=xi+yj+zkb=xi+yj+zk andc = xi+ yj+ zk then
a+b=(x,+x,)i+(y, +y, Ji+(z,+2,)k and so

i J k i jJ k| |i J k
(@a+b)xc=ix+x, y+y, z+g|=lx ¥ z|+x ¥, z|[Faxec+bxe
X3 Ys % X3 Y3 4| %3 N &

Thus(@+b)xc=a xc +b xc
(ii) Proof is similar to (i) above




3.6.8 Angle between two vectors
One use of the cross product is to calculate the angle between two vectors.
(i) Let @ and b be the two vectors. Then by definition of cross product

la x bl =lal bl sinewhere 0 <0< x

: la x b| ! .
. sinf= W i.e. the sine of the angle between b

a

the two vectors is the modulus of their cross product /6{

divided by the product of their moduli. a ”

X b .

Hence @=sin™ ‘—a—-—l EuTE 3,5

i

Example 24: For the vectors @ = 2 + 5f + 3k, b = 3i + 3] + 6k, and c=2i+7j +k,
find
i (a-b)x(c-a)
(i) a unit vector perpendicular to both a and b
(iii)  sin@ where @ is the angle between a and b.
Solution: (i) a—b = (2 + 5 + 3k)— (3i+3j+6k) =~i + 2 — 3k
c—a =(2i+7j+4k)—-(2i+5+3k)=2+k

LR -
s@-b)xc-ay=[-1 2 =3 =2+6)i-(-1-0)+(-2-0)k=8i+j-2k
0 & 1
(i) Let 1 be the required unit vector orthogonal to both @ and b, then
;‘1= axb M
laxbl
Il Y &
axb=12 5 3 =(30-9)i-(12-9)j+(6-15)k=2]i- 3j- 9%,
30.3.. 6

la x bl = (213H3FH-9) = 531 =359
Putting in (1), we have
A 2Ui-3j-9k _ Ti=j-3
359 J59

(iiiy  Since la x bl = lal 16l sin & where £ is the angle between a, b, we have

sing < laxbl W59 359 _ 3459 3 J59

.. sin@ = = = = SINg = ——=—
lallbl J3854  J38x54 3228 V228




lL.;_qi_j [| \‘,.:u’m

3.6.9 Moment of Force
The moment M of a force F about a point P is defined as the product

M = |F| d, whered is the (perpendicular) distance between P and the line

of action L of F as shown in (Figure 3.55)
F,

If r is the vector from P to any point Q on L, then
r

P i d)
d=lr| sin ¢ '.QQ
M =!F|d =]riF Isinﬂ d
~ Figure 3.55.

Since & is the angle betweenr and F,s0 M= rxF
The vector M= r x Fis called the moment vector or vector moment of F about Q.

Example 25: Find the moment about a point A(2,1,1) of the force F=7i+4j-3k

applied at (1,-2,3)
Solution: If r is the position vector of the point P of application relative to the
point A about which the moment is calculated, then moment M is given byM=rxF

where r= AP =(2itj+k)— (i-2j+3k) = —(i+3j-2k). Hence,

i j ok
M=rxF =1 3 <2| =—[(-9+8)i+(-14+3)+(4-2Dk]=i+1]j+17k
7 4 -3 |

EXERCISE 3.4

ik Fmd the following cross products.

DFxQ2j+3k (i)(2-3) xk (iii) 2i- 3} + 5k)y x (6i+ 2j-3k)
2. Show in two different ways that the vectors 4 and b are parallel:

(i) @=-i+2J-3k, b=2i-4j+6k (ii)d= 3i+6/-9k, b =i +2/-3k
3.  Find a unit vector that is orthogonal to the given two vectors:

(i) T= i-2j+ 3k, b 2i+ -k (ii) & = 3i -J + 6k, b=i+dj+k
4. Ifa_31—61+5k b= 21—]+4k C =§+ j-k,compute
(i) aXb (iiybxc (111)(a+b )x(a—b)

5. Use the vector product to compute the area of the triangle with the given
vertices: (i) P: (2,33),Q: (3,2),R: (-1,-8)
(i) P: (-2, -1,3), Q: (1,2, -1), R: (4,3, -3)
6. A force F = 3i—2Jj+ 5k acts on a particle at (1, -2, 2). Find the moment or
torque of the force about (i) the origin; (ii) the point (1,2,1).

7.  If A+B + C=0, show that AXxB=BxC=CXxA.

ook -
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8. (i) Find a unit vector perpendicular to both @ =i+ j+2k, andb=-2 +J -3k
(ii) Find a vector of magnitude 10 and perpendicular to both
d=2i-3/ +4k b =4i-2J-4k
9.  Find the area of a parallelogram whose diagonals are:
(i) d=4i+j -2k and B=-2+3j+4k
(i) d=3i+2/-2k and b=i-3j+4k

3.7  Scalar Triple Product of Vectors
3.7.1 Leta, b and ¢ be three vectors. The scalar triple product of the vectors a, b
and c is definedby a.(bxclor(axb)-c
The use of parenthesis with @ x b is not important, as the only other alternative
given to the expression a x b-c, namely a x (b-¢) is meaningless. The scalar triple
product a-b x ¢ is usually denoted by [a b c].
3.7.2 Expression of Scalar Triple Product in Terms of Components

Let a=x,i+yj+z,k, b=x,i+y, j+z,k and e=x;i+y, j+z,k be vectors, then

b il A5
bxe =x, » z| = bxXe=(y,1,- YLl x Y +Hxy,-xy,)k
X Vs &L
a-(b X ¢)= x,(y:2; = ¥522) = Yi(%2-%:2)+ 2, (X,Y:7%39,)
5 N g
=R o2 L
X Y g4
N g
Thus a-(b x c) =1, 3By el Z,
A S £ S 4

which is called the determirantal form for scalar triple product of vectors a, b and c.
Theorem: For any vectorsa, bandc¢, a-(b x¢c)=b-(c xa)=c-(ax b)

Proof: Leta=x,i+y,j+z,k, b=x,i+y, j+z,k and c=x,i+y,i+z;k, then by determinantal
form for scalar triple product of vectors a, b and ¢, we have

H N g
abxe) =x, y, 2z, (1)
X Y 4




Xy Y2 2, ST ST
Similatly b-(c xa) = |x, y; z| ==|x, ¥; 2,
X N g X, N %
N N g
= bfcxa) =[x, vy, z (2)
X Vs 4
5 Y H h 4
and claxbd)=|x y» z|==[x » 2z
X, Y2 4 X, Y %
X N g
= cfaxb)=|x, y, 2z (3) From (1), (2) and (3), we have
Hn oY 4

a(bxc)=b(cxa)=c(axb)
By virtue of above theorem [a b ¢] = [b c a] = [c a b]
3.7.3. Scalar triple product of i;j and k
Theorem: Let i, j and k be the unit vectors. Prove that
(a) ijxk =jkxi=kixj=1and (b) ikxj=jixk=kjxi=-1
Proof: The proof is simple, so it is left for students.

3.7.4 Dot and cross are inter-changeable in scalar triple product
Theorem: The positions of dot and cross in the scalar triple product can be

interchanged.
Proof: Let a= xi+yj+z,k and b=xji+yj+zk and c=x;i+yj+zk be any three
vectors. Then

Hoh g
a-(bxc)=|x, y, z (1)
5 Y 4
By definition
i j k
axb =\ N 4= (V12-2,Y i~ %, 22, X+ (X, -7, %, )k
X W 4L

(@ xb)c = (3,22, )%—(X 22, %)y HX, Y-, %:)2; (2)
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From (1) and (2), we have a-(bxc)=(axb)c
This shows that the position of dot and cross in the scalar triple product can be
interchanged.
3.7.5 (a) The Volume of the Parallelepiped paxbh G
Let us consider the parallelepiped witha, b andc |p
as co—terminal edges are shown in (Figure 3.56).
Thena =04, b= 0B, c =0C &
Let a x b = d. Then by definition of cross product  |°
d is perpendicular to the plane containing a and b
and geometrically represents the area of the ; .
parallelogram OAFB given by laxbl. The $ Figure 3.56
parallelogram is regarded as base for the
parallelepiped. If @ is the angle between the vectors d and ¢, then |oDI = lel cos @
being the projection of ¢ on d represents the height of the parallelepiped. Then from
elementary geometry, we know that the volume v of the parallelepiped is the area
of the base muitiplied by height.
Hence volume of parallelepiped
= Vv
N5l

(Area of parallelogram) (Height)
la x bl lel cos@
(axb)c

The scalar triple product will be positive if 8 is acute and ¢ lies on the same side

of the plane which contains a and b.
As |b x ¢l represents the area of the other side OCGB of parallelepiped, hence

v=abxc)
Therefore v=a(bxc)=(axb)c
This shows that a-(b x ¢) or (@ x b)-c is the volume of the parallelepiped with a, b,
and ¢ as the co-terminal edges.

3.7.5 (b) Volume of Tetrahedron A tetrahedron is determined by three edge

vectors a, b, ¢ as shown in (Figure 3.57).
The volume of a tetrahedron with a, b, ¢ as its co—terminal edges is
given by

-é [abc) = [a-{bxc}}



3.7.6 Propertles of Scalar Tnple Product
(1) a-b x ¢ being the volume of a parallelepiped with g, b, ¢ as co-terminal
edges, hence the evaluation of the determinant

LN g
X, ¥, 2,| givesthe volume of the parallelepiped as discussed earlier.
B C T - R <

(i)  If two of the three vectors are equal, then the value of the scalar triple
product is zero because for any two identical rows, the determinant
vanishes.

" (iii) [a b c]=0if and only if the three vectors a, b, ¢ are coplanar.

Example 26: Find the volume of the parallelepiped determined by

a=2i+3k b=6—-2k and c=-3i+3f
Solution: Let v be the volume of the given parallelepiped.

2 0 3
Then V=zabxc =|0 6 -2 =2(0+6)—0(0-6)+3(0+18)
-3 3 0

=12-0+54=66
Example 27: Find the volume of tetrahedron with a, b, ¢ as adjacent edges where
a=i+2k b=4i+6j+2k and c=23i+3-6k
Solution: Let V be the volume of tetrahedron.

Then

2
Zﬁl - % [(<36-6)-0(-24-6)+2(12-18)]

=< (42-12)= _6‘1 =9 (' Did You Know ﬁ}

We ignore the minus sign, because volume is always Two or more vectors are
non-negative. 'said to be coplanar if thcy
Example 29: Show that the points A(4, -2,1),B(5,1,6), lie in the same plane or

parallel to the same plane
C(2, 2, -5), D(3, 5, 0) are coplanar. ) th@rwise e L

p—

Solution: Non—coplanar vectors lie
Let a = AB = (5—<)i+(1+2)j+(6-1)k=i+3j+5k in three—dimensional space.

b = BC = (2-5)i+(2—1)j+(-5-6)k==-3i+j-11k
¢ = CD = (3-2)i+(5-2)j+(0+5)k=i+3j+5k

The four points are coplanar if the vectors AB, BC, CD are coplanar. We have




1831 @5
[abec]=|-3 1 -11| =1(5+33)-3(-15+11)-5(-9-1) = 38+12-5=0
IR3ES

Hence the four points are coplanar.

EXERCISE 3.5 |
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Find & (bx3), ifi=2i+/+3 & b=—i+2J+k andZ=3i+j+2k
Find the volume of the parallelepiped whose edges are represented by
a=3i+j-k b=2i-3j+k, c=i-3 -4k

Forthe vectors a=3i + 2k, b=i+2j+k, ¢ =—j+4k

verifythat a-bxc=b.-cxa=c-axh buta-bxc=-cxb-a
Verify that the triple product of i ~j, j-k, and k-iis zero.
Leta=a,i+aj+a;k andb = bji + b,j+ b,k Find a x b and prove that
(i) axb is orthogonal to both a and b (use dot product) (ii) Find (ax b)2
(iii) Find (a-8), |af, [b]

(iv) Show that |axb|’ = (a-a) (b-b)-(a- by

Do the points (4,-2,1), (5, 1, 6), (2, 2, -5) and (3, 5, 0) lie in a plane?

For what values of c the following vectors are coplanar?

() u=i+2+3k v=2i-3f+4k, w=3i+j+ck

(i) u=i+j—k, v=i-2f+k w=ci+j-ck

i) u=i+j+ 2k, v=2i+3+k w=ci+2j+6k

Find the volume of tetrahedron with the following

(i) Vectors as coterminous edges a=i +2j +3k, b = 4i +5j + 6k, c=7j+8k
(i) Points A(2,3,1), B(-1,-2,0), C(0,2,-5), D(0, 1,-2) as vertices. R
(i) Write the value of (i x f). k + 1. ] (ii) Write the value of (k x). 1+ jk
|

REVIEW EXERCISE 3 |

1. Choose the correct option.

The value of i- (7xl-f) +}f(}:x E) +_IE-G xf)

(a) 0 {(b) ~1 (1 (d) 3

The vector 37 + 5:1"-!- 2k, 2i— 3_7 — Sk and 5/ + 2j — 3k form the sides of
a triangle which is

(a) Equilateral (b) isosceles, but not right-angled

(c) Right-angled, but not isosceles  (d) right-angled and isosceles




(vi)

(vii)

(viii)

The two vectors & =27 + J +3%,b =47 — Aj+6k are parallel if A=
(a 2 (b) -3 ©3 (d) -2

If |&'+75| =|£_l.'—b| , then

(2) Tisparalleltob ()@ Lh () [a]=[b] (d) None of these
The projection of the vector 2i +35 - 2% on the vector T +27 +3k is

1 2 3

(@ —— (b) = ©)—7—

Jia V14 Jia
Find non-zero scalars &, ffor which (@ + 2b) - fa+ (4b @) =0 for
all vectors @ andb .
(a) @a=-2,f=-3 b a=2, f=-3
(c) =1, f=-3 d) a=-2, f=3
If a, b, c are position vectors of the vertices of a A ABC, then
AB+BC+CA=
(a) 0 (b) 2a (c)2b (d) 3c
If @ be the angle between any two vector @ and b, then|a-5|=|ax bl,
when @ is equal to
a) 0 ®% ©F @
Find Aand g if (7+37 +9%)x (31— A7+ pk )=0.
If 3=97 — j+F andb =27 — 27—k , then find a unit vector parallel to the
vector T +b.
If F=xi+y]+zk, find(Fxi). (ij)+xy.
If G=7+j—4k and b=2{+6}+3k, then find the projection of @ on b.
Find A, if the vectors =i +3]+k, b=2i-j—k and ¢=Aj+3k are
coplanar. = 2 _
Vector @ and b are such that || =3, |b| = 3 and (&'xb) is a unit

vector. Write the angle between a and b.
Find the area of a triangle whose vertices are (0,0,2), (-1,3,2), (1,0,4).

Find the area of the parallelogram with vertices A(1,2,-3), B(5,8,1),
C (4,-2,2),D(0,-8,-2).
Prove that in any triangle ABC

(i) a% = b* + ¢ —2bc cos A (Cosine Law)
(ii) @ = b cosC + c cosB (Projection Law)

(d) None of these
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Staclents will Ibe able 10:

Define a sequence (progression) and its terms.
Know that a sequence can be constructed from a formula or an inductive
definition.

Recognize triangle, factorial and pascal sequences.

Define an arithmetic sequence.

Find the nth or general term of an arithmetic sequence.

Solve problems involving arithmetic sequence.

Know arithmetic mean between two numbers.

Insert n arithmetic means between two numbers.

Define an arithmetic series.

Establish the formula to find the sum to n terms of an arithmetic series.
Show that sum of n arithmetic means between two numbers is equal to n times
their arithmetic mean.

Solve real life problems involving arithmetic series.

Define a geometric sequence.

Find the nth or general term of a geometric sequence.

Solve problems involving geometric sequence.

Know geometric mean between two numbers.

Insert n geometric means between two numbers.

Define a geometric series.

Find the sum of n terms of a geometric series.

Find the sum of an infinite geomeltric series.

Convert the recurring decimal into an equivalent common fraction.
Solve real life problems involving geometric series.

Recagnize a harmonic sequence.

Find nth term of harmonic sequence.

Define a harmonic mean,

Insert n harmonic means between two numbers.
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Unit 4 | Sequences and Series

4.1 Introduction

In practical life you must have observed many things follow a certain
pattern, such as the petals of a sunflower, the holes of a honeycomb, the grains on
a maize cob, the spirals on a pineapple on a pipe cone €tc.
In our. day-to-day life, we see patterns of geometric figures on clothes, pictures,
posters etc. They make the learners motivated to form such new patterns.
Number patterns are faced by learners in their study. Number patterns play an
important role in the field of mathematics. Let us study the following number

patterns

() 2, 4,6, 8, 10,... (i) 1,14,2, 24.,3,... (i) 10,7, 4, 1,-2,... (iv) 2,4,8,16,32,...
1 NP il i 1 1 | H

walt Ll oLl L @il 1L HLIUL L,

It is an interesting study to find whether some specific names have been given to
some of the above number patterns and the methods of finding some next terms of

the given patterns.
Observing various patterns various sequences were defined to solve various

summation problems.

Among various sequences A.P. (Arithmetic progression), G.P. (Geometric
progression) and H.P (Harmonic progression}) are most common.

Idea on A.P. was given by mathematician Carl Friedrich Gauss, who, as a young
boy, stunned his teacher by addingup 1+2+3+ ...... + 99 +100 within a few

minutes. Here's how he did it.
He realized that adding the first and last numbers, 1 and 100, gives, 101 and

adding the second, and second last numbers, 2 and 99, gives 101, as well as
3 + 98 = 101 and so on, Thus he concluded that there are 50 sets of 101. So the

sum of the series is S0(1 + 100) = 5050.

4.1.1. Sequence
A sequence is a function whose domain is the set of positive integers. The

numbers in the range of a sequence are real numbers, called terms of the
sequence.

4.1.2 Construction of a sequence from a formula (inductive definition)

Let f be a function defined by
f(n)=2n, ne{1,2,3,..}

then  f{1)=2, the first term
f(2)=4, the second term
f(3)=6,thethirdterm ..............
Thus the required sequence is 2, 4, 6, ...

Mathematics-XI
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In sequences, instead of using a symbol such as f{n) for the nth term
(usually called the general term) which denotes the number that corresponds to a
given integer n, it is customary ‘to use the symbol a, for f(n). When the nth term of
a sequence is known then we denote the entire sequence by the symbol {as},
where a,, a; as,... are the first term, the second term, the third term of the
sequence {a,} and so on. Since the order among the positive integers induce ! the
ordering among the corresponding terms of the
sequence, this clearly shows that the ordering
has a vital role in the definition of a sequence, F A saguence may be‘descnbed |
so we can also define a sequence as follows. by smlfymg first few terms |

A sequence is a collection of numbers [apda formul&i a set of

arranged in particular order. ‘formulae)*glvmg a relatxon' i
The sequence 1,1,2,3,5,8,...can be written as tbefweesn successive *terms

Xj=Xy= I, Xy =¥+ %2, n>2,n €N. Suchrggfonnula i§ called ]
This sequence of numbers is called the RECURSIVE HEIRMULA !
Fibonacci sequence. Some sequences may not ’@”‘ﬁECURRENEB |
be described by any rule 2,3,5,7,11,13,17,... [RELATION). |

B e il e e o el Al A A

the formula for a,, the nth prime number has not

been found yet.

Example 1: Write the first four terms ay, ay, a3, and a4 of each sequence,
where a, - f(a).

(a) f(n) =2n-5(b) f(n) = 4(2)n-t

Il
n n+1)

ke
Solution: A sequence 1s slun'.?lt to be
a) Since f(n) =2n-5 finite if there 'm a ﬁrst and
a=f(1) = 2(1) -5 =-3 izsllictenn o?;er_wmg 1t+1§ said
a, =f(2) =2(2) -5 =-1 8 TR T i bk

In a similar manner, a;= f(3) =1 and a,= f(4)=3.
b) Since f(n) = 4(2)"”
a=f(1)=4(2)"" = 4

Similarly, a,=38, a3=16and a3=32.

MYoul(now

Tlm iactor E—l) causes )
the terms sof thelsequence |
c) ay = f(1) = 1! (1/1+1) =172, l.to alternate signs |

=f(2) = (12 (272+1) = 2/3, _.__H_h:“w_'u'_‘-_; |
a3 = f(3) = (-1)* ( 3/3+1) =-3/4.
ay=f(4) = 1)* (4/4+1) = 4/5.
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Example 2: Find the first four terms of the recursive sequence that is defined by
ap=2ap4+1; a,=3.
Solution: The sequence is defined recursively,so we must find the terms in order.

=3 Did Youv Know
ap=2a+1=23)+1=7 — __..,_.[?_—’
que representation of a
a=2a+1=2(N+1=15 sen et e .Ivt&.»%'f:- T
au=2a+1=2(15+1=31 ' ine |
The first four terms are 3,7,15, and 31.

4.1.3 Some special Sequences
Some well-known sequences are given in the following example.
Example 3: Write down the first five terms of each recursively defined sequence.
(a) t=1,1,, =t, +n+l),n=1273.
(b} L=l fu=0r+Df, ,r=0123,..
4-

,
(& =1, p,=——p, r=0123.
(c) Po Pra +1 P,

Solution: (a) 1 =1
tL=4+2=1+2=3
t,=t,+3=1+2+3=6
t,=t;+4=142+3+4=10
ty=t +5=1+2+3+4+5=15

(b) f=1
fi=Lf=1x1=1
f,=2.fi=2x1=2
f;=3.f,=3x2x1=6
fi=4.f,=4x3x2x1=24

This sequence is so important that it has its own special notation, r !, read
as ‘r factorial’. Itis defined as: Q! =land r + D! =+ 1) xrt, r=0,1, 2,...

() p=1

et foms nedneYoee
SN PR e
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The sequences given in example 3(a), 3(b) and 3(c) are special type of
sequences, called the triangle number sequence, the factorial sequence and Pascal
sequence respectively. These sequences play an important role in the expansion of
binomial expressions like (x + y)".

The complete Pascal sequence in 3{c) is

1,4,6,4,1,0,0,0,0,. ..
This is only one of the families of Pascal sequences. Due to its importance, it has
a special notation,

4
[ ) , r=0,1,2,3,...
r
exa =1, = , = . = o &= 4 = SO o
or mpile 0 1 n 3 4 5 an on

Obviously, different Pascal sequences will have different multiplying factor.

The general definition of a Pascal sequence is:

["]=1 and[ 1 ]:"" ("] , r=01273,...
0 r+1l r+l \ur

We obtain the following Pascal sequences for n =0,1,2,3,4,... by using the
above general definition:

n=0100000,..

n=1110000...
n=21212000,...
n=3133100,...
n=4:146,4,1,0,...

from which we extract the well-known triangle, called
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il Did You Know !il}_

Summation Notation
Summation notation is used to write series effectively. The symbol},
the uppercase Greek letter sigma, indicates a sum. '

n
Y ag = a; + az + a3 +..eeee + a5
k=l

The letter k is called the index of summation. The numbers 1 and n represent
the sub-scripts of the first and last terms in the series. They are called the

lower limit and upper limit of the summation, respectively.

(Practice ! i I} ((Remember lj'

Using summation notation Sequences and Series
Evaluate each series A sequence is an ordered list,
no2 whereas a series is a sum of
(@) E—nk the terms of a sequence.
a For example. -
)] 25 1,3,5,7,9,11,13,15is a
=L sequence, and
(© i(zk_s} 1+3+5+7 +9+11+ 13 +15
=1 a series. :

4
Example 4: Find the sum Zkz(k -2)
-1

Solution: ik’(k—z)=12(1—2)+22(2—2)+3’(3—2)+41(4—2)
- =(-)+0+(9)+(32) =40

10
Example 5: Find the sum Zc, ¢ is constant
k=1

10
Solution: Zc =c+c+c+...+c=10c
k=1
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1. Clasqlfy the followmg into finite and infinite sequences.

() 2,4,6,8,.. (i1) 1,0.1,0,1,.
i Ll 1 ]
(iii) _...,—4,0,4,8,...,60 (iv) 1,—3_,9_. T 287
2. Find the first four terms of asequence with the given general tefms:
n(n+1)

i (i) =1y
(@ > (=1)
1\ ; n(n—Din-2)
liii — iv - T
i (3] o L
5. Write down the nth term of each sequence as suggested by the pattern.
(@) %%,-}% (i) 2,4,6,-8,10,... (i) I,~11,—1,...

4. Write down the first five terms of each sequence defined récu:sively.

(1) =34, ,=5-a, (i) ‘a=3a,=
5. Write each of the following series in expanded form.

[ 5
() >.2i-3) () D (=1k2t!
fouil k=]
I & . 3.’:
{i1i) Z-—- \ (iv) Z(—]
i-l W AW

6. Find the Pascal scq‘uences for: (1) n=5 (il) n=6 (ili) n=:8 by using its
general recurswc definition.

4.2 Arithmetic Sequence (AP)
4.2.1. Numbers are said to be in Arithmetic Sequence (A.S) or Arithmetic

Progression (A.P) when its terms increase or decrease by a common difference.
Thus each of the following sequence forms an Arithmetic Progression:

3,7, 11, 155000 W e

8,2,—4,-10, ..cc.oiiiiiiannn

a, a+d, a+2d, a+3d,..........c........
The common difference is found by subtracting any term of the series from that
which follows it. In the first of the above examples the common difference is 4; in
the second it is —6; in the third it is d.
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4,2.2 The nth term of an Arithmetic Sequence
We find a formula for the nth term of an arithmetic sequence. Let a,be its

first term and 4 be its common difference. Then consecutive terms of the
sequence are given by

a =a,+0d =a,+(1-1)d

a,=a,+d=a +1-d=a+(2-1)d
a,=a,+d=(a+d)+d=a,+2-d=a,+(3-1}d
a,=a,+d=(a,+2d)+d=a+3-d=a,+(4-1)d
a,=a,+d =(a,+3d)+d =a,+4d=a,+(5-1)d

=a,=q, +(n-1)d

Example 7: Find the 15™ term of the arithmetic sequence whose first three terms
are 20, 16.5 and 13.
Solution: Here q, = 20,d =16.5-20=-3.5 and n=15. Substituting these values in

the formula: a,=a,+(n-d
We obtain,  a,; =20+ (15-1)(-3.5) =20-49 =-29
If any two terms of an Arithmetic sequence be given, the series can be
completely determined; for the data furnish two simultaneous equations, the
solution of which will give the first term and the common difference.
Example 8: The 8" term of an arithmetic sequence is 75 and the 20" term is
30. Find the first term and the common difference. Give a recursive formula for

the sequence.
Solution: We know that a, =a, +(n—1)d

then az=a,+7d=175 (i)
and a,, =a,+19d =39 (ii)
Subtracting (ii) from (i), we obtain
-12d=36 = d=-3
From (i) we get g, +7(=3)=750or a1= 96
Since a,=a;+ (n—1)d =96 + (n—1)(-3)=99-3n
Gpey =99-3(n+1})=99-3n-3=96-3n =( 99_3n)-3=a,—3

Sv Qes = Gn— 3 is the required recursive formula for the given arithmetic
sequence.
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4.3 Arithmetic Mean (A.M)
4.3.1 When three numbers are in Arithmetic Progression, the middle one is said
to be the arithmetic mean of the other two.

) . . a+b
Thus arithmetic mean of two numbers a and b is

, where a and b are called

the extremes. Mathematically, it is derived in the following way:
Let A be the arithmetic mean between two numbers a and b, then a, A, b,
form an arithmetic sequence. By definition, we have

A-a=b-A
2A =a+b
Hence A=a;—b

Thus the arithmetic mean of two numbers is equal to one-half of their sum.
Example 9: Find the arithmetic mean of +2 —3and v2 +3
Solution: Here a =v2-3, b=-2+3

a-’:bzﬁ—3:\/§+3=ﬁ

A=

Between two given numbers it is always possible to insert any number of terms

such that the whole series thus formed shall be an A. P.; the terms thus inserted
are called the arithmetic means.

4.3.2 Inserting n Arithmetic Means (A.Ms)
Let A,A,,..,A be n AMs between a and b then
a,A, A,,...A,,b form a finite arithmetic sequence of n+2 terms, that is:
an+2 = b

a+(n+2-1)d = b, where d is the common difference

(n+Dd=b—-a
F|d ==
n+l Prets
Thus A,=.a+d=a+n+1

Ay=a+2d=a+?2 (b'“)
= n+l

Aj=a+3 (b"’)

Similarly  A;=a+4 [b_a)
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A,=a+n (b—-a)
n+l
which are the required n A.Ms between a and b. Thus, A, Ay, A, are real numbers
such that a, A, A,,...A,.b is an arithmetic sequence, then 4,.4,,.... 4, are called the n

arithmetic means between the numbers a and b. The process of determining these
numbers is referred to as inserting n arithmetic means between a and b.

Example 10: Insert three arithmetic means between 2 and 9.

Solution: Let A;, As and A; be the arithmetic means between 2 and 9 such that

2, A;, Az, Az 9 forms a finite arithmetic sequence of 5 terms witha=2,b=09. Let
d be the common difference, then as=b gives that

a+dd =9 = 2+4d =9

4d =7 =>d =% Thus the three arithmetic means are

o= ord =2z AL
4 4
7V 11
=a+2d =2+2(—] =—
A 4) 2
2

—

A=a+3d =243 1):—2
4 4

| Find the 15th term of the arithmetic sequence 2, 5, 8, ....

9 The I* term of an arithmetic sequence is 8 and the 21 term is 108.
Find the 7th term.

3. Find the number of terms in the arithmetic progression 6, 9, 12, ....., 78.

4. ‘The nth term of a sequence is given =by‘a,1 =120 +7 Show that it is an A.P.
Also, find its 7™ term.

5. Show that the sequence log a, log(ab), log(abg), .log(abaj, ......... is an
A P. Find its nth term.

6. Find the value of 'k’ if 2k+7, 6k-2, 8k —4 are in A.P. Also find the
sequence.
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7. fas+a,=6and a;~a, = % find the arithmetic sequence.

8. If b+g—a JCtazh atb-c  aein AP then _pruve-!-, 1, lare in A.P.
- b g ' a b c
9. A ball rolling up an incline covered 24m during the first second, 21m
during the second, 18m during the third second. Find how many meters it
covered in the eighth second?
10 The populauon of a town is decreasing by 500 1nhab1tants each year Ifits
population in 1960 was 20135, what was its population in 1970?

I1. Ahmad and Akram can climb 1000 feet in the first hour and 100 feet in
each succeeding hour. When will they reach the top of a 5400 feet hill?

12, A man earned $3500 the first year he worked. If he received a raise of
$750 at the end of each year for 20 years, what was his salary during his

twenty first year of work?
13. Find the arithmetic mean between the given numbers:
() 12,18 (i) %i’ (ifi) ~6,2216 . (iW) (a+b)/(a—by

14, Insert: (1) Three arithmetic means between 6 and 41,
(i) Four arithmetic means between 17 and 32.

] -

15. For what value of n, W— is the arithmetic mean between g and b?
(1

16. Insert five arithmetic means between 5 and 8 and show that their sum is
five times the arithmetic mean between 5 and 8.

17. There are n arithmetic means between 5 and 32 such that 'the ratio of the
3rd and 7th means.is 7:13, find the value of n.

4.4 Arithmetic Series
4.4.1 As we know that associated with every sequence is a series, the indicated
sum of the terms of the sequence. If the sequence happens to be the arithmetic
sequence, then the associated series is called the arithmetic series.

Let {a,} be the arithmetic sequence then the series

a+ta,+..+ta = Za,‘ is called the arithmetic series.
k=1
The arithmetic series in the general form or standard form is given as:
n

S, =a,+(a,+d)+(a,+2d)+..+[a,+(n-Dd1 =D [¢ +(k-Dd] (1)
k=1

where S, denotes the sum of the first n terms of the arithmetic series.
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442 Sum of first n terms of an Arithmetic Series
The next result gives a formula for finding the sum of the first n terms of an

arithmetic sequence.
Theorem: For an arithmetic sequence {a,}, the sum S, of the first n terms is given

by S, =%[2a, +(n-1)d|
=%(a, +a,)

Proof: The sum of the first n terms of an arithmetic sequence is denoted by S,.
Let S,=aq+a,+a;+....... + a,

Since d is the common difference between terms, S, can be written forward and
backward as fellows.

Forward! Start with
‘é’:;’::m‘?‘:;';" S =a + (@ +d) + (a +2d)+-- - +2, o
. S, =2, +(a,-D+ (ap-2d)+---+a two equations.
Backiar S with | S, = (2, + an) + (a1 + 3p) + (A FA) F---F @ ¥ an)
subtracting d. :
= n sums of (a; + an)
28 =n(a; + an)
™. h sides b
s, = % (al + a,.) Solve for s, , dividing both sides by 2.
a,= al +(n—l)d’
.S, =%{a, +a,+(n-1)d}.
SN -’1{2aI +(n-1)d}.
Example 11: 2
Finding the sum of a finite arithmetic series. Use a formula to find the sum of the
arithmetic series 2+4+6+8+.......... + 100.

Solution:  The series 2 + 4 + 6 + 8 +........+ 100 has n=50 terms with a; =2
and asp= 100. We can use the formula § = %(al +an) to find its sum.

Sso=50( 2+ 100) =2550
2

We can also use the formula S, = %{20, +(n-1)d}.
Sso= 50/2 ( 2(2) + (50-1) 2) =2550
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Example 12: The sum of an arithmetic series with 15 terms is 285. If a5 = 40,
find a,

Solution: To find a;, we apply the sum formula
S, =g(al +a)  withn=15and a;s=40

175(a1 +40) = 285

15(a+40)=570  Multiply by 2.
(a,+40)=38 Divide by 15.
a =-2 Subtract 40
Example 13: The first term of a series is 5, the last 45 and the sum 400. Find the
numebr of terms, and the common difference.

Solution: If nbe the number of terms, then from

S, =g—(a, +an)

400=%(5+45);

Hence n=16.
If d be the common difference
45= the 16™ term = 5 + 15d;

Hence I, 2%.

Example 14: Find the sum of the first 200 positive odd integers.
Solution: Since the positive odd integers:
1,3,5,.4:2n-1.... form an arithmetic sequence with

a,=1,d =2,n=200 then a,=a +(n-1)d
=1+ (200 -1)(2) =399

.‘.S"=%(al+au) =‘—229(1+399) =%(400) = 40000

Example 15: Find the 18" term and the sum of the 18 terms of the arithmetic

sequence; =8/'=3,2,7, ..
Solution: Since we are given that:
—-8,-3,2,7,... isanarithmetic sequence.
Then a, = —8,d =5and n =18. We have to find a,, and S,
Since ay =a;+(n-1)d
3 ajg=—38+ 17(5); putting values of a; & d
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=77
n
S, = E(a, +an)
S5 = %(—8+ 77) putting values of a; & ay
= 9(69)= 621

Example 16: The 10th term of an arithmetic sequence is 32 and the 18" term is

48, what is the sum of the first twelve terms?
Selution: Let a; be the first term, d be the common difference and n be the

- number of terms of the given arithmetic sequence.
Then 4g,=32, q;=48
a,+(10-1d =32, a,+(18-1)d =48
a,+9d =32 (i)
a,+17d =48 (ii)
Subtracting (i} from (ii) we obtain
8d =16
d=2
(i) gives that a;+18 = 32
aj= 14

Now S, =%{2a, +(n—1d)

Si12 & %{2(14)+11(2)} =6{28+22} =300

Example 17: Find the sum of all the integers lying between 100 and 600 that end
in 3.
Solution: The integers lying between 100 and 600 that end in 5 are
105,115, 125, ..., 595
which form an arithmetic sequence with
a, =105,d =10,a, =595
then a,=a,+(n-1d
595=105+10n-10
10n =595-105+10
= 500
n=2>50

Since §,= —’21-(al +a,)
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Which gives S, = %(105 +595)

=25(700)
R =17500

4.4.3 Relation of A.M of two numbers with n A.Ms between them
Theorem: The sum of n arithmetic means between two numbers is equal to n
times their arithmetic mean.
Proof: Let there be n arithmetic means between a and b such that

a,a+d,a+2d,...a+nd.b
forms an arithmetic sequence with n+2 terms. Then

a+(@+d)+(@+2d)+...+(a+nd)+b= n+2[2a+(n+2—-1)d]
= ";2 [a+{a+tn+1d}]
= ";2[a+b] b=a+(n+1)d
n+2

(a+d)+(@+2d)+...+(a+nd)= (a+b)—(a+b)

= (a+b) ["+2—1]

2

e

( ]
n
4

Thus the sum of n arithmetic means = n (arithmetic mean)

4.4.4 Real life problems involving arithmetic series

Exampie 18: Finding the sum of a finite arithmetic series

A person has a starting annual salary of Rs.300,000 and receives a 1500 raise each
year. -

(a) Calculate the total amount earned over 9 years.

(b) Verify this value using a calculator.
Solution: (a) Using S, = iz’-{zal +(n-1)d},

S, = %{2x300000+(10—1)1500} = 3,067,500

(b) To verify this result with a calculator, compute the sum g, +a, + a, +- +ay,

= 300000 + 301500 + 303000 + 304500 + 306000+ 307500+ 309000 -+310500
+312000 + 313500 = 3,067,500
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Example 19: A new car costs Rs.1200000. Assume that it depreciates 24% the
first year, 20% the second year, 16% the third year and continues in the same
manner for six years. If all the depreciations apply to the original cost, what is the
value of the car in six years?

Solution: Since the depreciations 24%, 20%, 16%, ... form an arithmetic
sequence with

a=24,d=—-4andn==6
Calculating the sum of the depreciations over six years

S,,=%{2a,+(n—l)d}

S, =-§-{48+5(-4)}

=3(28)=84
Now the total depreciation in six years is 84% of 1200000

= —SiXIZOOOOO = Rs.1008000
100

Thus the value of the car in six years = 1200000 — 1008000=Rs.192000.
Example 20: A display of cans in a grocery store consists of 24 cans in the bottom
row, 21 cans in the next row and so on in an arithmetic sequence. The top row has
3 cans. Find the total number of cans in the display.

Solution: Since the display of cans are in arithmetic sequence with
a; =24, a,=3 and d = — 3 calculating the number of rows, we have
a,=a,+(n-1)d

3=24-3n+3
3n=24
n=8

Now the total number of cans is given by §, =-g—(al +a,)
8
S, =—(24+3
3 2( )

=4(27)
=108 cans
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EXERCISE 4.3 | | |

1. Find the indicated term and the sum of the indicated number of terms in
case of each of the following arithmetic sequence:
(i) 9,7, 5,3, ...;20th term: 20 terms

(i) 3,—2—,%,2,...; 11" term; 11 terms
2. - Some of the components a,,a,,n,d and S, are given. Find the ones that
are missing:
(i) a=2n=17,d=3 (i) a,=-40,8, =210
(lil) a, = —7,d = 8, S,, =225 - (iV) a = 4, SI’H =30

3. Find the sum of all the numbers divisible by 5 from 25 through 350.

4, The sum of three numbers in an arithmetic sequence is 36 and the sum of
their cubes is 6336. Find them. [Hint: suppose the numbers are a —d, g, a+ d]

5. Find four numbers in arithmetic sequence, whose sum is 20 and the sum of
whose squares is 120. [Hint: suppose the numbers are a — 3d, a—d, a + d,
a+ 3d]

6. X( X3 X3, ... are in A.P. IfX;+ X7 +X 9= —6 andx3+X3+ x,=—11, find
X3+ Xg+ X, -

7. Find: 1+3-5+7+9-11413+15-17+... up to 3n terms.

8. Show that the sum of the first n positive odd integers is n’.

9. . Find the sum of all multiples of 9 between 300 and 700.

10.  The sum of Rs.1000 is distributed among four people so that each person

after the first receives Rs. 20 less than the preceding person. How much
does each person receive?

1. The distance which an object dropped fram a cliff will fall 16ft the first
second, 48 ft the next second, 80 ft the third second and so on. What is
the total distance the object will fall in six seconds?

12. Afzal Khan saves Rs.1 the first day, Rs.2 the second, Rs.3 the third and
Rs. N on the nth day for thirty days. How much does he save: at the end
of the thirtieth day?

13. A theater has 40 rows with 20 seats in the first row, 23 in the second row,
26 in the third row and so forth. How many seats are in the theater?

14.  Insert enough arithmetic means between 1 and 50 so that the sum of the
resulting series will be 459.
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4.5 Geometric Sequence

4.5.1 In nature, certain phenomena can be described by geometric sequences. For
example, archaeologists use the half-life of carbon 14 to estimate the age of
ancient objects. Carbon 14 is a radioactive element that decays. gradually,
changing to nitrogen 14. The half-life (i.e. the time it takes for half of a given
amount to decay) of carbon 14 is about 5600 years. Thus, one kg of carbon 14

will be reduced to ]5 kg in 5600 years, to % kg in 11200 years, to % kg in 16800

years and so on. Which is obviously a geomeltric sequence withr = % .

A geometric sequence (progression) is a sequence for which every term after the
first is the product of the preceding term and a fixed number, called the common
ratio of the sequence. We use the same notations as we use in A.P. with one
exception that is instead of d, the common difference, we use r, the common ratio
in geometric sequence.
Thus each of the following is a geometrical sequence.
3,6,12,24, .......ninn.

1 11 1 ;

379 27
A,ar,ar’, ar, o aarf=
The common ratio, and it is found by dividing any term by that which
immediately precedes it. q
In the first of the above examples the common ratio is 2; in the second it is—-s; ;

in the third it is r. A geometric sequence is recursively defined by equations of

the form:
a, =da,

and a_,, =ra, where a and r are real numbers, q, # 0,r#0,and ne N

4.5.2 The nth term of a Geometric Sequence
The nth term of a geometric sequence is given by: a, = a,r""?
To find a formula for the nth term of a geometric sequence, we write down
the first few terms using the recursive definition to observe the pattern:
Istterm =a, = a7’ =ar"”
nd term = a, = ar =ar’

= — — v4 i 3-1
3rdterm =a, =a,r=a,r- =ar
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dthterm =a, =ar=ar =qr""

.

nthterm =a, =q,r""
Example 21: Find the first five terms and the tenth term of the geometric

sequence having first term 3 and common ratio-—% A

Solution: Here a,=3, r=_%

Then the first five terms are
3L 3303

BT
Substituting the values in the formula a, = g,r""'

¥

1)
we have a, =(3) (-E) withn=10

9
Y,
2 512

Example 22: Show that the sequence {a,}=2" is geometric and find its’
common ratio.

Solution: Since a,=2"
enl g M= 2740
and r= Dns1 = 2-(”” =.1_
a 2 2

The ratio of successive terms is a nonzero number independent of n, thus {a,) is
. ; 1
geometric sequence with r= S

Example 23: If the third term of a geometric sequence is 5 and the sixth term is

— 40, find the eighth term.

Solation: Here ¢, =5and a, =—40 then we have ar*' =5 and qr®'=-40
or ar*=5 ®
and  ar®=—-40 (if)
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Dividing the equation (ii) by the (i) we obtain

ar’ _-40
ar* 5
or P=-8 =(=2=r=-2 and a, =% by (i)

Now @,=ar"" = (EJ (—2)1r =-160

4
4.6 Geometric Means (G.Ms)
4.6.1 when three numbers are in Geometrical Progression, the middle one is :
called the geometric mean between the other two.
Mathematically, it is derived in the following way:
Let a and b be the two numbers; G the geometric mean then

2 =—, since a, G, b are in G. P.,
G a

.. G*=ab;
G =+Jab.
Example 24: Find the geometric mean of each of the following pairs of numbers.
-3 5
Solution: (a) By the above definition

G=Ja—b =Jox1 =J144=12,Sincca,b>0.'. G>0
®) G=—Jab . Since a,b <0 . G<0

T -

4.6.2 To insert n Geometric Means between two numbersa and b
Since the terms between a and b of a geometric sequence are called the geometric
means of a and b, Thus Gy, Ga, ....., Gn, are the n geometric means between a and

b if a, Gy, Ga, ....., Go, b form a geometric sequence. Moreover it is a finite
geometric sequence of n+2 terms with a; =2 and api2=b.
Let r be its common ratio, then ayz =b gives that ar' =b, va, = ar"™! |

1

ﬁr:(%)nﬂ
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b+t
Hence Gi=ar=a v

a

2
Gy=ar? = a(b—) i

-

Gn=f:lrj'1 = a[g)

Example 25: Insert two geometric means between 64 and 125.
Solution: Let G|,G; be the two geometric means between 64 and 125 such that
64, Gy, G2,125 is a geometric sequence.
Thus a,=64,n=4 and a, =125
Let r be the common ratio of the geomelric sequence, then
a, =125 gives ar =125
64r® =125 putting value of a,

E(E) oblis
64 4 4

2

Hence G =ar = (64) G) =80 and G,=a,r'= (64)(%) =100
Example 26: Insert three geometric means between 2 and 32.
Solution: Let G,,G;,G; be the three geometric means between 2 and 32 such that

2, G1,G1,Gs, 32

is a geometric sequence.

We have a,=2,n=5 and a, =32 ¢

let r be the common ratio, then

a; =32

gives  ari=32
2r'=32 = r'=16 =(2)) = r=182

we have two sets of geometric means given below: Ifr=2
then G =ar=02)2)=4
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G,=ar’ =(2)2y =8

Did You Know

-, o B

; ' BE = o R .I‘-I:ai; !- i
G,=ar’=(2)2)° =16 Tt can be seen from Example 25
and 26 that if the number of

Ifr=-2 then \required geometric means is

G,=ar’=(2)(-2)*=8

P o 'even, a single set of geometric
G =ar=2)(-2)=—4 ‘means is ob%aimd,-if;the number
‘of required geometric

means is odd, two sets of
G, =ar’ = (2X-2)’ =-16 geometr-_i_c_mcans are obtained.

e el e e s e

Write the first five terms of a geometric sequence given that:

UL GRS (ii) a1=8;r=“%
R A a s £ : JF gy
(W) @ ==o=ir==3 (iv) aiG T

Suppose that the third term of a geometric sequence is 27 and the fifth
term is 243. Find the first term and common ratio of the sequence.
Find the seventh term of a geometric sequence that has 2 and —J2 for -

its second and third terms respectively.
How many terms are there in a geometric sequence in which the first
and the last terms are 16 and é respectively and 7 = %?

Find x so that x+7,x—3,x—8 form a three term geometric sequence
in the given order. Also give the sequence.

If a, =¥, a,=m,a,=n; show that In=m"

Show that the reciprocals of the terms of a geometric sequence also
form a geometric sequence.

Find the geometric mean of the following:

(i) 3.14and2.71 (1) —6and—216

(i) x+yandx—y  (i¥) y2+3 and v2-3
(i) Insert 5 geometric means between 3% and 40%.

(ii) Insert 6 geometric means between 14 an -—-gz
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10.  Find two numbers if the difference between them i is 48 and their A. M
exceeds their G.M. by 18.

11.  Prove that the product of n geometric means between 4 and b is equal
to the nth power of the single geometric mean between them.

n+l +]
12.  For what value of n, -"——”—— is the geometric mean between a and
jatt bt _ i
b?
4.7 Geometric Series

4.7.1 Since with any geometric sequence we have an associated geometric series,
which is the indicated sum of the terms of the geometric sequence.

Let {a,} is a geometric sequence, then Zar. =a +a,+...+a, +... is called
i=1

a geometric series.
If r is the common ratio, then the above series can be written in the form

dar=a+ar+ar’+.ar+... (1)
i=1
known as the general form of the geometric series.

4.7.2 Sum of first n terms of a Geometric Series
Theorem: For a geometric sequence with first term a, and common ratio r # 1, the

sum S, of the first n terms is:
S = a(l=r")
- i-r

Proof: Let S,=a +ar+ar’+..+ar"

(2)

-1 Sy is the sum of the first n
terms of the sequence.
Multiply bothsides of the
equation by r.

S..=a1+a|r+alrz+ ........ +a1r“'2+alr”
Sp=arr+ alr2+a1r3+ vesreees @) riis ar

Sa—1Sp=a;—-a,r" Subtract the second equation from the first equation
Sa(l-t)=a,(1-r*) Factor out S, on the left and a; on the right.

Sa = a(1=r")  Solve for S, by dividing both sides by 1-r
—T .
(assuming that r # 1).
which is the required sum of the first n terms of a geometric sequence.
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a(l-r"
Since S, =M
1-r
_a-ar _a —(ar")r
l-r 1-r
a,-—a,r .
=——1_ g =ar"" isthe last term

n

Remember

1-r - —
. T T2 1 (3) It is better to use the forms
1-r

is the alternative form of the result given in (2)

Example 27: Approximate the sum for the given [S,= ..,__..'%-f;_. ‘

values of n.

(@) 1 +1/2 +1/4 + ...+(1/2)';n=5, 10, and 20

0)3 —6+12 — 24 +48 - ... +3(-2)""
n=3,8, and 13 '

Solution:  (a) This geometric series has
ai=landr=%=0.5.

Ss=1(1-05)=19375
1-0.5

Sw=1(1=05"°) = 1998047
1-0.5

Sa=1(-0.5") =1.999998
1-0.5

(b) This geometric series hasag,=3 and r =%=-2
Si=3(1-(=2) =9
1- (-2)
Se=3(1—(-2)* =-255
1- €2)

Sn=3(1-(2)" =8193
1- (2)
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Example 28: Sum the series %, -1, %, wrreneennfD 7 tEIMS,
Solution: The common ratio = —53; hence by formula %4"7 2 (1-r")
> =
7 ]
()} H-)
The sum = S
3 3
1+ - 1=
2 2
2 1+2187
3] 128 _2,2315 2 (463
- 5 37128 5. 95
2

Example 29: Compute: 2+6+18+54+162+486

Solution: In this case q, =2,r=%=3>1.n=6

Substituting the values in

g @D
" r—1
6 f—
5. =230 359 _1-728
Example 38: Given that g, = i:— 48 and §, = 321 findrand n
' aid
Solution: Since =i -, a, =48

3
d  Zrt=4s
an i
= r' =64 (i)
Also, we have S, = a,_l—_rfz_"
-r
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3
4 1-r
129 -129r=3 -192r
63r=—126
r=-=72

From (i) we have
-2"'=64 = (-2 =(-2)°
n-l1=6=> n=7
Example 31: Suppose that the third term of a geometric sequence is 27 and the
fifth term is 243. Find a;, r and Ss.
Solution: Since a, =27 and a; =243
Then we have ar®>=27 (i)  ar*=243 (i),

e n=1
a, = ar

Dividing (ii) by (i) we obtain

ar' 243
ar’ T 27
r’=9= r=13
We obtain two different solutions since there are two values of r.
r=3 r=-3
ar’=27 ar’=27
a @BR*™ 27 a,(-3)* =27
a,.9=27 a,9=27
a =3 a, =3
The first sequence is The second sequence is
3,9,27,81,243,... 3,-9,27,-81,243,...
s, = ra;—a, s, = ra; —a,
r—1 r—1
2 (3)(243)-3 g = (-3X(243)-3
3-1 ’ -3-1
_729-3 363 _7732 _1g3
2 —4
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10
Example 32: Find the sum ZG- 2

i=]
10
Solution: Zﬁ*Zi =62+62°+62° +---+62"
i=]

Do you see that each term after the first is obtained by multiplying the
preceding term by 2?7 To find the sum of the 10 terms (n=10), we need to know
the first term, a,, and the common ratio, r. The first term is 6. 2 or 12:
a;= 12. The common ratio i$ 2.

So= a0l Use the formula for the sum of the first n terms of a
r=l geometric sequence.

Sie=12(2"-1) a (the first term) = 12, r = 2, and n = 10 because
2-1 are adding ten terms

= 12,276 Use a calculator
10 :
Thus, ZG'Z' =12,276
i=1

4.7.3 Sum of infinite Geometric series

Our discussion of series has so far been restricted to those associated with

finite sequences. The series associated with the infinite sequence:

a,ar,ar,...ar"’,..
is denoted by:
gtar+ar’+..ar +.=Y ar"

and is called an infinite series. Important questions arise over here are, what do
we mean by the “sum” of an infinite number of terms, and under what
circumstances does such a “sum” exist? The answers to these questions depend
upon the concept of “limit” which is studied in a course in the calculus. However,
for some particular infinite series we can give an intuitive idea of the concept of

44 "

sum
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Consider the formula for the sum of the first n terms in a geometric
sequence, we have already proved that:

(@, +a,+a,+...+a =na,r=1

a,—a+a-..+(-)""a,r=-1

S =<a|(r —1),'rl>1 (4)
r—1

SU=7) 1<

(i) Since S, = na,, when r=1
As n increases, the sum of the infinite geometric series increases without
limit. Symbolically it is written as:
limS, =lim na =co
H—yoo n=je=
Thus the infinite geometric series in this case does not have a finite sum.
(ii) Here S,=a,—a +a,—...+(-1)""a, whenr=-1
The sum of the first n terms is ajor 0 according as n is odd or even;
therefore the sum oscillates between the values 0 and a;.
a(r'=1 r l
ol 1 For-1
Since |r|>1, then the absolute value of each term is greater than the
absolute value of the preceding term. Therefore such an infinite series cannot

have a finite “sum”.
Mathematically, it is shown that:

lim s, = lim (i——“l—u) =um(“1’ ]-i e a1 | s
1-r) 1 1—-r

n—jos e 1-r 1-r n—deo

(iii) S, = 2 _lr>1

q,

(iv) S, =

-r
= G _ar a' |rl <1
1-r 1-r
This is the case which provides us a quite different situation and we have
some useful result.
Since || <1, then 1" approaches zero as n increases with out bound, that is,

"

as close as we wish to 0 by taking n sufficiently large. It

we can make " or
-r
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follows that S, approaches Igl-— as n increases without a bound and we write
-r
S.= —-
J =iz a ar
Mathematically, it can be shown as lim,_,, §, =lim_, —1—-'—- —1‘—
-r 1-r
.. L Wy P
1l "
a, aq,
= b ——y(0
l-r 1-r ©
S = a,
l—=r
This gives us the following:

Theorem:  If |r]<1,then the infinite geometric series:

a
a,+ar+ar’+--+ar” +- hasthe sum: 1—-'—
-r

Example 33: Find the sum of the infinite geometric series:
3.3,.3 36N
8 16 32 64 .

Solution: Before finding the sum, we must find the common ratio.

r:EL :-ﬂ.@. =_i.§=_.._1.

& 3/8 16 3 2
Because r = —1/2, the condition that [ r | < 1 is met. Thus, the infinite geometric
series has a sum

- _ 4 This is the formula for the sum of an infinite
I-r geometric series. Here a;=3/8 andr= —1/2
- 38 _.3/8 3.2

|
T1-(=1/2) 32 B34

Thus, the sum of E_}__,_i o B TITEL is% . Put in an informal way, as we

! : 1
continue to add more and more terms, the sum is approximately I
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Example 34: The sum of an infinite number of terms in G. P. is 15, and the sum
of their squares is 45. Find the series.
Solution: Let a denote the first term, r the comngon ratio; then the sum of the

.. a . . a
term is —; and the sum of their square 1s T

1-r -r
a
Hence = | 51 Mes29 Rt LRI (1)
1-r
2
a
ZA5.eieeecvrerreaerene 2
— (2)
Dividing (2) by (1) + == =3eeeerremreesrrreseens 3
g@by (D T~ (3)
1+r 2
And from (1) and (3) 1——=5; = r=-_-3—, and therefore a=>5.
-r
Thus the series is 3, 139 -2—99, ........

Example 35: Find the sum of the infinite geometric sequence: 1%%%
1
Solution:  Here a, =l,r=% and |r|=5- <1

Thus the sum exists and is given by the formula:

S = 4 _ QN

| W

-r b -L
-3
4.7.4 Conversion of recurring Decimals into an equivalent fraction
Recurring decimals furnish a good illustration of infinite Geometrical Progressions.

Example 36: Convert 2.34 to a common fraction.
Solution: Since 2.34 =2.3+0.04
23

=— +0.04444.......
10
23
=E +004+0004+00004+ ........
e + (_a, ),-a1=0.04, |r|=0.1<1
10 1-r
_B, (o) B 4
=70 l1-01) 10 9 90
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Example 37: Convert 021 to 2 common fraction
Solution: Since 021 =0.212121... =0.21+ 0.0021+ 0.000021+...

= 0.21+ (0.01)(0.21) + (0.01)%0.21) +...
Which is an infinite geometric series with ¢; = 0.21, r = 0.01,
; 7
and |r| =0.01 < 1, so the sum exists and is given by § = o g2l _
7 1-r 1-0.01 33

Thus 021 =~
33

4.7.5 Real life problems involving Geometric series

Example 38: Computing a lifetime salary

A union contract specifies that each worker will receive a 5 % pay increase each
year for the next 30 years. One worker is paid Rs. 20,000 the first year. What is
this person's total lifetime salary over a 30-years period?

Solution: The salary for the first year is 20,000. With a 5% raise, the second-year
salary is computed as follows:

Salary for year 2 = 20,000 + 20,000(0.05) = 20,000(1 + 0.05) = 20,000(1.05).
Each year, the salary is 1.05 times what it was in the previous year. Thus, the
salary for year 3 is 1.05 times 20,000(1.05), or 20,000(1.05)%. Thus

i __ Yearly Salaries Baln )
Year 1 Year2 - Year 3 Year 4 Year 5

20,000 20,000(1.05)  20,000(1.05)°  20,000(1.05)  20,000(1.05)" wes 3

The numbers in the bottom row form a geometric sequence with a; = 20,000 and
r = 145 %=1+.05=1.05. To find the total salary over 30 years, we use the formula
for the sum of the first n terms of a geometric sequence, with n = 30.

_af1=r) _ 20,0001 -(1.05)" _ 20,000[1-(1.05)*]

S =
y 1-r 1--1.05 —0.05

=1,328, 777
(Use a calculator)

The total salary over the 30-years period is approximately Rs.1,328,777.

Example 39: The tip of a pendulum moves back and forth so that it sweeps out
an arc 12 inches in length and on each succeeding pass, the length of the arc

traveled, is % of the length of the preceding pass. What is the total distance

traveled by the tip of the pendulum?
Solution: Since the pendulum eventually comes to rest due to friction. We have

the following geometric infinite sequence.
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7 7\’ AN
12,| £ = -
2'(8) (12),[8) (12),(8J (12),

3
and the total distance traveled S = 12+( ) (12)+(;] (12)+(E) (12)+...

which is an infinite geometric series with

a, =12,r=% and |r]<1,so the sum exists.

Thus the total distance traveled = Ig'—
: -r
ozl 2
7
8 the,’%concept f’ 'a value
=96 inches *“f;’b‘;?d *ry'{ﬁmte value

Example 40: |
A ball is dropped from x feet above a flat surface. Each time the ball hits the

ground after falling a distance h, it rebounds a distance rh where r < 1. Compute
. the total distance the ball travels.

Solution: The path and the distance the ball travels is shown on the sketch of
figure. The total distance s is computed by the geometric series

s=a;+2ar+ 2a,% + ?.alr3 +... (D
The common ratio is %a-“—r ()
By distance = a
\ / 1
ar . distance = 2ayr
a2 I - distance = 2ar”
a3 V e £ R0 ES — distance = 2z1|r3
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Adding the first term of (I) with (IT) we form the total distance as
- 2a;r (_I.J_“_f'_\f
S—a1+m—a| 1_’_j

For example, if a; = 6 ft and r = 2/3 , the total distance the ball travels is

7 1+2/3 _
S=6x1iop =308

- Coinpute the sum:
) 346+12+...43.2° (ii) 3+-4+z+1+...+%
0244274254 42" (v %,—L ‘:'
v) o2 2 1 11 151 3
LY i -E'Ev" (vi T35 Tgr to 7 terms.
2. Some of the components ag,,a,,n,r and S, of a geometric sequence are

given. Find the ones that are missing,
(1il) =-2,§5, =—63,a, =-96
3 Find the first five terms and the sum of an infinite geometric sequence
having a, =2 and a, =1
4. Findthevalueof: (1) 08 (i) 163 (i) 245 (iv) 0123
5. Find r suchithat: §,, = 2445, .
6. Prove that: § (S, ~S,,)=(5,—85,,)°

7. Find the sum S, of the first n terms of the sequence {(%) } -

8. The sum of three numbers in G. P. is 38, and their product is 1728;
find them.

9. The sum of first 6 terms of a geometric series is 9 times the sum of its
first three terms. Find the common ratio.

10.  How many terms of the series: 14+/3 +3+.... be added to get the sum
40+13./3. :
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11.  Ifp® g™ ™ terms of a G. P. be a,b,c respectively,prove that a% b PP =l

12.  Find an infinite geometric series whose sum is 6 and such that each
term is four times the sum of all the terms that follow it.

: 2 3
I3 I y=£+x—2+—3+..., where 0<x< 3, then show that Jc=—l
Fhel32ess Lty

14. A ball rebounds to half the height from which it is dropped. If it is
dropped from 10 ft, how far does it travel from the moment it is
dropped until the moment of its eighth bounce? i

15. A man wishes to save money by setting aside Rs.1 the first day, Rs.2
the second day, Rs.4 the third day and so on, doubling the amount each
day. If this continued, how much must be set aside on'the 15™ day?
What is the total amount saved at the end of 30 days?

16.  The number of bacteria in a culture increased geometrically from
64000 to 729000 in 6 days. Find the daily rate of increase if the rate is
assumed to be constant.

4,8 Harmonic Sequence

4.8.1 A harmonic sequence is a sequence whose reciprocals form an arithmetic

sequence.

The sequence: L,ll,li (D

246810

is not an arithmetic sequence. However the reciprocals of these numbers, namely:

2, 4, 6, 8,10 do form an arithmetic sequence. Thus the sequence (1) is an example

of a harmonic sequence. A harmonic sequence is also called a harmonic

progression (H.P).

Example 41: Three numbers a,b,c are in H.P. when f.- :_b
c -c
-b
Solution: Given SR then a(b—c)=c(a-b)
¢ b-c
or ab—ac=ca-bc Dividing by (abc), we obtain:
1 1. 1.1
c b b a
Thus l;’—,l are in A.P. and hence a, b, ¢ are in H.P.
a c
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4.8.2 Finding nth Term of a Harmonic Sequence
Remember

The typical form of a2 harmonic sequence is

gl 1 1 Manya mpcrtxcs of harmomc 1
a a+d a+2d " a+(n-1d’" PFP%"BSS'OH_ can be obtamed '

The general term or the nth term of this H.P.is | aniﬂll;tlehc;
1 I-lbwever, the ¢isno

+(n—Dd elementary formula for the

A sum of alhmmom?sﬁquenw

whose reciprocal a,+(n—-1)d is the nth term of the A.P.

Example 42: Find the twelveth term of the harmonic progression: 6, 4, 3,...
Solution: The 12™ term of the corresponding A.P.

111 twelvth

is a,, =~—+(12 l)(IZ) soa,=a+(n-d

-]3
12
Thus the 12° term of the given H.P is EZ—
4.9 Harmonic Means (H.Ms) >

4.9.1 (i) A number H is said to be the Harmonic Mean (H.M) between two
numberaand b (a # 0,6 = 0)if ¢, H, b are in H.P.

Then -1—,—1- l arein A.P. and i =l(-l-+l) Ji.e. F;— is the AM

a ' H'b Hi22\arp
betwet.anl andl.
a b
1 _a+b
H 2ab

—22% is the H.M. between g and b

a+
(1)The numbers H,.H,,...H, are said to be the n Harmonic Means (H.Ms)

between two number a and b (a # 0,b % 0) if
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a,H,H, H,,...,H b arein H.P.
lual==] 1

1
Then obviously: % F ? F yos F —l; are in A.P with n+2 terms.

—+(n+2 d= —,uttllzmga,,—a;+(n nd

a—b
= =
ab(n+1)
1 1 a—b ab(n+1)
Th —_——=—at H = el
s H, a abn+l) o " nb+a
_1__1_{_2 a—b or . ab(n+1)
H, a abn+l) (n-Db+2a
L_l_}_?’ a—b or H,= ab(n+1)
H, a abn+l]) (n—2)b+3a
L=l+n a—b . Hn=ab(n+1)
H a abn+l) b+na

by using El-=al+id, i=12,3,...,n. Hence H,H,,H,,..,H,, are the n H.Ms
between a and b.
Example 43: Find the harmonic mean of 24 and 16

Solution: H= e , where a=24,b=16
a+b

_2(24)16) _ 2x24x16 96
24+16 40 3

Then

1
13°
Solution: Let H,H, H, and H, be the required H.Ms, then

Example 44: Insert four harmonic means between —-;—and

,H,,HZ,HJ,H4,% are in H.P

-2,—,—,——,—,13
HH, H, H4 arein A.P

Mathematics-XI




Unit 4 | Sequences and Series

with a =-2

Did You Know
s = 13 By i Al i :' "
a,+5d =13 7%’19"%;”"“ .:.:.;.;-m-ir-:; i
~2+5d =13 of %ﬁﬁ'&ﬁﬁ aismaj*ﬁ‘:m:J
d=3 \gtﬂml.ﬂ;lc:aﬁhords an%ghe_lf |
7 1 P wt £= |
Now —=-243=1=H, =1 FEil g s T
H:I
——1-—=1+3=4=» H, e
H, 4
~—1——4+3=7=>H3 =l
H, 7
Hox =7+3=10=H, =i
H, 10
Hence 1 1t -! are the re u1reci 4 H.Ms. between —landﬂ—lh
'2'7'10 < 213
Example 45: Find a relation among Arithmetic, Geometric And Harmonic
Means. .
Solution: Let a#0,b# (0 be any two positive numbers,
then A= ﬂ
2
i SA 20 G = ah
a+b
2
) AxH =212, 200 _ o =(Vab) =G* = AG,H arein G.P
2 a+b

(i) A>Gif—’%—’3>JE

a+b>2Jab
a+b-2ab >0,
(va — b * >0, which is always true
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A>G (1)
G>Hif Jab > 2ab
a+b
a+b>2Jab
(Ja - B )*> 0, which is always true
. G>H 2)
(Dand(2) > A>G>H
13 Find the indicated term of each of the following" harmonic
progressions:
111 ohtem G 62,2, 20%temm
2'5 5
i 523223 8% term
reeSayl

2 Find five more terms of the H.P. %,l,—l,.

e

3. The second term of an H.P is -;— and the fifth term is —-i— . Find the

12t term.

4. Find the arithmetic, harmonic and geometric means of each of the

following. Also verify that Ax H =G,

i) 3.14and2.71 (i) —6and-216 (1) x+yandx—y
an+l+bn+l
For what value of n will -—T_l_—bT-be the harmonic mean between a and b?
a

3

© N o W

product of the arithmetic mean and the
numbers.

Insert four harmonic means between i and—7-

Insert two harmonic means between 12 and 48.

11

Prove that the square of the geometric mean of two numbers equals the

harmonic mean of the two

0, The arithmetic mean of two numbers is 8, and the harmonic mean is 6.

What are the numbers?
10.  The harmonic mean of two numbers is 4

What are the numbers?

% and the geometric mean is 6.
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.. L | I
Review Exercise 4 |

1. Choose the correct option.

()

(ii)

(1it)

(iv)

(v)

(vi)

(wvit)

The sum to 200 terms of the series 1+ 4+ 6+ 5+ 11+ 6+ . ......is

(2) 20,300 b) 29,800

(c) 30,200 () None of these

If the sum of the series 2+ 5+ 8+ 11......is 60100, then the number
of the terms is -

{a) 100 {h) 200 (€)}150 (1250

If a, b, c are in G.P,, then

(2) a®, b%, ctare in G.P. (h) a® (b+c),c? (a+b), b? (a+c) are inG.P.

(c )-8, b, are in G.P. (d: None of these

b+c c+a a+b

If the nth'term of an A.P is 4n+ 1, then the common difference is
(a) 3 (b) 4 (c)s 416

Which of the following is not a G.P.?

(2)2,4,8,16,........ (b) 5,25,125,625,......

ic) 1.5,3.0,6.0,12.0..... () 1891 6]:24 532 i B
There are four arithmetic means between 2 and -18. The means are
(a) —4, =7, =10, =13 1, -4,-7,-10

(c) -2, =5,-9, -13 A =2, -6, -10, --14
If A, G and H are AM, GM and HM. of any two posmve
numbers, then find the relation between A, G and H.

(1) A’=GH ()G =AH (©)H2=AG (d) G*=A%H

(vii1) Find the number of terms to be added in the series 27,9, 3, ...... 80

(ix)

(1)

that the sum is 1093/27
(a).6 (b)7 (c)8 {d) 9

Find the value of p (p>0) if gﬂn'%-ﬂp and 2+p are the three

cansecutive terms of a geometric progression

(a) g ttw)l —5— -d}-1~

4 4 3 2
The 10" term of harmonic progression 1/5, 4/19, 2/9, 4/17,. ..is
(a) 11/4 (b) 13/4 (c14/13 (d)4/11

Find the sum of 3 geometric means between 1/3 and 1/48 (r>0).

(a'1/4 {b) 524 (c) 7124 (d)1/3
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3

10.

I1.

If the first term and common difference in an AP are 8 and -1
respectively, then find: :

(i) General term (11) The Progression (iii) The 10th term and

(iv) The expression for sum to n terms and hence sum to 10 terms.

If the sum of the n terms of the series 54, 51, 48, .... is 513, then find the
value of n.

If the sum of n terms of an A.P. is 2n+3n’, generate the progression and
find the nth term

Find the sum of all natural numbers between 250 and 1000 which are
exactly divisible by 3.

Find the sum of the series 1, 2/5, 4/25, 8/125, ........, @

Ifa, b, c are in A.P. and x, y, z are in G.P, show that x°y* 2" = x° y* z

Find the arithmetic mean between 10% and 25—;- %

Find three numbers of a G.P. whose sum is 26 and product is 216.

How many odd integers beginning with15 must be taken for their sum to
be equal to 9757

A gas-filled balloon has risen 100 feet.
In each succeeding minute, the balloon
rises only 50% as far as it rose in the
previous minute. How far will it rise in
5 minutes?
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term we end with

i

~ & the formuia for

= / the nth term
Lt Z “@/
k —4l

f X the term we start with

sigma for
summation

MmO C

k is the index
(it's like a counter.
Some books use i.)

P

v

| []
Abter reading ilus wimt the students wiil 1"\‘i :_H:ﬂ."t- R

» Recognize sigma (X ) notation.
s Find sum of
e the first n natural numbers ( X n),
e the squares of the first n natural numbers ( £n?),
« the cubes of the first n natural numbers ( 3n2).
Define arithmetico-geometric series.

* Find sum to n terms of the arithmetico-geometric series.

s Define method of differences. Use this methed to find the sum of n
terms of the series whose differences of the comsecutive terms are
either in arithmetic or in geometric sequence.

® Use partial fractions to find the sum to n terms and' to infinity the
1 1 ;

a(@a+d) (@ rdya+2d)

= 7 73] bz (m) =

() 722

o] Ml =] = [a)

o
S

vy m

series of the type
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51 Introduction

In the previous chapter, we computed the sums of arithmetic and
geometric sequences. In this chapter, we discuss a few more techniques for
computing sums of some other sequences. Since we are already familiar with the
standard notation, called the sigma notation (X) and its rules. However here we
properly define it with a few examples of summation notation.

5.1.1 Sigma Notation
The letter “3 ” of the Greek alphabet (pronounced as sigma) is used to
denote the sum of a given series. The letter Tis placed before the rth term, say,a,.

We, thus write I a,to denote the sum of terms of the type a,. If we want to sum
up terms a, for values of r corresponding to r=1,2,3,...n, we denote the sum by

z a, or by Zar
r=1 1
Example 1: Find the following sum.

4 3 k 6
MY RE-3) W Y = Gip Y Dk
k=1

k=0 (k+1) k=2
4
Solution: (i) Y, k*(k—3) =1>(1-3)+2°2-3)+3* 3-3) 4 (4-3)
k=l =(-2)+(4)+0+16 =10
Loa 2 A 2! 2? 2
() § ®eD _0+) Ta+p T @+ TG
=1+1+§ +2=?

6
iy > <Dk
k=2 F
= CIPV2 4 CIPVB + (DA + CIPV5 + D6
=2 -3 +2-45 +6

. . 10 1 8 1
Example2:  Simplify > = -2, )

j=2 ] =

Solution: It can be seen that most terms are common to both sums and will

cancel. In the second sum, let & = j+2 and in the first sum, let k = j, then we
10

have o 1 & 1 001 1
> =D = =3 D

=2 1 = j+2 k=2 1=3
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This example illustrates how changing the index can simplify expressions
involving several sums.
5.1.2 Evaluation of sum of the first n

i.  Natural numbers

ii. Squares of natural numbers

iii. Cubes of natural numbers
Before evaluation of the above mentioned sums, here we discuss a general
principle that will allow us to compute a wide variety of sums.
Suppose by, bo, ... , by, is a sequence

and a,=b,, —b,

n

then D'a, =3 (b,,~b)
j=l

j=l
=(b,—b) + (b, 3B+ ...+ (b,,,—b,)
=-b +(b,~ b)) +(b;~b)+..+(b, - b)) +b,,,
5 bnrl -bl

Thus if a;=b;,—b;

then Zai = by1— by

j=t
This statement seems very simple, yet in practice it can be very powerful.

n
Suppose we want to compute Za - If we can find a sequence by, by,... such that
j=l
b;,,~b; =a, ,then we can write down the answer immediately, that is b,,, -4, .

(i) Let b, = j* ' (1)
then b, —-b,=(j+1)*-;
=2j+1

thus here, we take a;=2j+1

Now using Z a,=b, —b
J=1

> @j+h=m+1) -1 by (1)

IR

. o
Mithematjes-N £ 160;‘..
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22 j+i 1=n"+2n

22 j+n=n*+2n

J=1

22 j=n*+2n—n
j=1

2 j=n’+n
J=1
Hence z j= i)
=l 2
iy et b=j (2)
then b, —b;=(+1’ -/’
=3 +3j+1
thus herea; =3 +3j+1.
Now, using the following z a, =b,,—b
j=1
Y GA+3j+D) =+’ -1 by (2)

i=t

321 +3Z]+Zl n+1

i=l

3 7 ("("+1))+n=(n+1) =

Jj=1

32 P=(m+1)'-1-3 (”("; 1))— n

=1
=(n+1)3—(n+1)—§n(n+1)
"“[2( +1)*-2-3n]
__n+1 _n+l 2
=2 [Zn +2+4n—2-—3n] -—-2—[2:: +n]

_ n(n+1)(2n+1)
2
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Hence > j”=%[n(n+l)(2n+l)]
i=l
(i) Let b= (3)
then b, -b=0+1)'-j =47+6j2+4j+1
wetake a,=4j7+6; +4j+1
Now, using the following

Z a; =bn+| =

D (@A +6724j+1) =(n+1)* —1* by(l)

ju1

42 j +62 i +4Z _]+Z 1=(n+1)" -1

i=t

42 1§ +6(n(n+l)6(2n+l)} +4(H("2+ ]) +n=(n+1)' -1

J=l

42": FP=m+1) ~1-n(r+D2n+1)~2n(n+1)—n

=l
=+ =(n+1)—n(r+1)2n+1)-2n(n+1)
=(n+Di(n+1)° -1-2n* —n-2n]
=+’ +3n° +3n+1-1-2n-3n] =(n+1) [n*+n?)
=nz[n+1)2

i j’ =[n(n2+l):l

j=l

Example 3:  Find the sum of the n terms of the series.
12 +23 + 34 4...
Solution: Let T, be the general term of the given series, then

T;=j(+1)

and i Tj =i (j2+j)
=l J=i
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=2 P2
J=l j=1
_ n(n+1)(2n+1) + n(n+1)

6 2
=f(i;i)- [2n+1+3]

n(n+1) @2n+4)

_ n{n+1)(n+2)
-3
Example 4: Find the sum of the n terms of the series
122 4+2:32 434 +...

Solution: ~ Here T, = j(j+1)’
then Y T, =2, (f+2j°+)])

j=1 j=l

=Y P2 P4

=t J=l j=1

2 2
_n (n+l) +2n(n+1)(2n+l)+n(n+l)
4 6 2

=3'£;2ill [3n +3n +8n+4+6]

n(n+1)

(3n> +11n+10]

= —113 n(n+1)(n+2)(3n+3)

Example 5:  Find the sum of n terms of the series whose nth term is
2" +8n° —6n".
Solution: Giventhat T, =2""'+8n—6n’
then T,=2" +8;° -6
3 1,=3 @7 +87-6/)

=) i=l

=i 21"+8i j’-6i i \
j=1 4

Jj=1 j=l
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2-1 4 6
=2"—1+n(n+1)[2n* +2n - 2n-1]
=2"—1+n(n+1)(2n* -1)

=[1(2" —1)]+8,:n2(n+1}2]_G[n(n+l)(2n+l)]

1. Sum the following series up to n terms

(i) P+3 458+ 72+ (i) 2 +H(P+2)+ (12427432 +

Gii)) 22 +4%4+6%+-. (iv) P+F+5 4+ (V)P +5+9 +...
Find the sum 1-2 +2.3 + 3.4 4 -..499.100

Find the sum 1% +3% 457 + 72 +...4-992 |

Find the sum 2+ (245)+ (2 + 5+ 8)+-~« to n terms

Sum 2 + 5+ 10 +174- - to n terms

Sum ton terms. 1:2:3 +2:34+ 345 4 ---

Sum to n termis 1-5:9 + 2.6:10 + 3-7-11+---

Find the sum to 2n terms of the series whose nth term is 4n*4+5n+1

W 90N v oW

Find the sum of n terms of the series whose nth term is:
() n*(2n+3) (i) 3(4°+2n?) — 4n°

5.2 Arithmetico-Geometric series

Since we are already familiar with the arithmetic and geometric sequences
and their related series. Now, we discuss here another important sequence and its
related series, which we obtain from arithmetic and geometric sequences,

5.2.1 A series which is obtained by multiplying the corresponding terms of an
arithmetic series and a geometric series is called Arithmetico-Geometric series.

For example,
l[a+(a+d)+@+2d)+ . +(@+(n-Dd][14+r+r 4.+ r"]

=a+(a+d)r+(a+2dyr’ +...+(a+(n-1d) r**
which is arithmetico-geometric series.
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nth term of Arithmetico-Geometric Series
A series which is formed by multiplying the corresponding terms of an
A. P. and a G. P. is called an arithmetico-geometric series. Thus nth term of such

series has the form [a+(n ~d] xr™?

4“‘

S.Z.ZSnmotntermotWSﬂﬁs
Let S, =a+(a+d)r+(a+2d)r2+...+[a+(n—1)d] r"! (1
then rS, = ar+(a+d)r2+...+[a+(n—2)d] o4 [a+(n=-Dd} " (2)

‘subtracting (2) from (1) we obtain
(1-rS,=a +(dr+drt+..+dr"") ~[a+(n ~d] r

n-1
-r

" l-r 1-r 1-r
__2 . dr __dr’ _[a+(n-1)d]r" 3)
1-r (1-r) 1-r)y (1-r)
which is the required sum of the n terms of arithmetico-geometric series.
. 4 7 10
Example 6: Sum the series l+§+§2-+§3—+ ..... to n terms.
4 7 10 3n-2 ¥
Solution:Let S=l+-+5+5 4.t nn_l I_Iol‘e : u
5 5 5 5 S
1.1 4 7 3n—5 3In—2 Sum to infinity of an
sn=S=—t=tgt.. —+ Arithmetico—Geometric
5 & V5 5" 5 Series
4 3 3 3 3\ 3m_z et <l
..-§S=1+ -5-+gz—+-5—3'+ ......... +§;:Tl' = 5 Then r"—0 asn—o
. Equation (3) reduces to
—1+§(1+l+—1-+ +—1——)—3n_2
5 5 52 ......... 5"_2 5" S_ .._-_i_+ dr 2
1-r (-0
3 1- ‘":"-T in-2 which is the required sum
=1+= 51 20 - to infinity of arithmetico—
5| 1-= 3 geometric series
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=T 1 (15+12n-8)_7 12n+7 L §o33_12n+7
T4 5 4.5 T4 45 16 165"

Example 7: Sum the series.
2:1+4-3+6-9+8-27+10-81+...t0 n terms.

Solution: Let $=2-1+4-3+6-9+...+(2n-2)-3"2 +.25.3", )
Multiplying by 3, the common ratio of the geometric series, we get
3-S=2-3+4-9+6-27+...+(2n~—2)-3"" +2n.3", (ii)

Subtracting (ii) from (i), we get
(1—3)S =2-l+{3[4—2)+9(6—4)+27(8-—6)+...+3""(2n—2n—2)}—2n-3".

(-2)-§=2-1+{2(3+9+27 +..to(n-1)terms)} ~2n-3"

n-1 _
=2+2[3-(3 I)J—ZH-B"
3-1

=2+3"-3-213" =—1-3" (2n-1).

S=é—[l+3"(2n—1)]

Example 8: If x<1, sum the series
1+2x+3x* +4x° +.....to infinity

Solution: “Let S=1+2x+3x+4x’+. . (i)
x8= x+2°+3x> +...... - (i)
Subtracting (ii) from (i), we get
SS(I-x)=1+x+x+x° 4.,
The RH'S is an infinite geometric series with a,=1 and r=x<1
S (Ix) =1

1-x

~L8= 1

(=)
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1 1 | 1

. Example 9: Show that 2 X 4% x 816 x 162 X...0c0=2
' 1 1 1 1

Solution: Let x=2%Xx 48 x 816 x 162 X...00
1 1 1 1

logx:log27+]0g45+logSE+Iog16§+...°o

1 1 1 q
logx=—log2+—-logd+—log8+—logl6+...e
BX =108 ST GI0BA T 0BT 55 08

1 1 1 1
logx=—log2+—log2®+—log2* +—log2' +...e0
BX =4 10BCTGIOBL T 082 Ty, 0B

1 2 3 4
I =—log2+—log2+—log2+—Ilog2+...
og X 4 og 8 Og 0g 32 Og

16
1 2 3 4
1 =(—+—+—+-—+...oo]] 2 i
%B*=\4"87 16 322 0g2 o0
1 2 3 4 . . . . .
Now, —+—=+-—+—+.,.o0 is an arithmetico-geometric series
4 8 16 32
Let s=142,3.2, o (i)
4 8 16 32
}_S=l+£+i+i+._.m (iii)

- 2 8 16 32 64
On subtracting Eq(iii) from Eq(ii), we get
1 1 1 V1
—S=—4—d—F—+.. .
2 4 8 16 32
Slg- 41 L 1,
2 R A

L

2 2
S=1
~{)=>logx=1xlog2

logx=log?2

Sx=2.
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1.

5.3

Sum to n terms the following series

@) 1.2+2:2243-2°+4.2°+ . (i) 1+4x+7x>+10x° +.."
(iii) 1+2x+32° +4x7 +... (iv) 1+§+%+%-+___

(v) 1-7x+13x* —19x’ +...

Find the sum to infinity of the following series

@) P+3x+5x°+7° %+, x<1 (ii) l+%+-3?2-+;—?+%3+...
Find the nth term of the following arithmetico—geometric series

05 12NN IR AT

—+—t—F—+—+—

155 204 SR B 6 B 32

Find the sum of the following Arithmetico—-geometric series

5+1+1+£+...
3 27

. 44
Ifthesumtoinﬁnityoftheseria53+5r+7r2+ ...... w is T3t
find the value of r.

The Method of Differences

In the case of some series in which the difference of successive terms form an

A.P, or G.P., the following method can be employed to find the nth term. The sum
of such a series to n terms may then be obtained.
Example 10:Find the nth term and the sum to n terms of the series

1+7+17+31 +49+..........

Solution: a,—a, =6
a, —a, =10
We have Ga7e =14

--------

........

a, —a, , =(n-1)th termof thesequence 6,10,14,...

Adding column-wise, we get
a,—a, =6+10+14+18+.....to(n-1)terms,
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a,-q, =i’;—1[2-6+(n-2)-41

a,—a, =" 124+ an-8]="2
2 2

. aﬂ=1+2(n—1j(11+]) [...a1 =1]
an=2n2—1

.a, =2r -1
..,Za,=2z,.z_21=2_n(n+1)(2n+1)_n= nn+)@n+l)

1 1 1 6 3
_n(n+1)(@2n+1)=3n_n(n+2)(2n-1)
3 3

<.the required sum § Gk, 2;(2" i)

Example 11: Find the nth term and the sum to n terms of the series
3+5+9+ 17 +31+..........

Solution: a,—a, =2
a,—a,=4
We have a,—a, =8

-------- ans

n

a,—a, =(n-1)th term of thesequence 2,4,8,...
Which is a G.P. Adding column-wise, we get '

a,—a =2+4+8+.... to(n—1)terms,

n-1
a,—a, 22 1)—2”—2
2-1
a =2"-2+3 [ a =3]
na,=2"+1
sa=2"+1

23 e =[24224 2 +2 442714 2]
AR,

+n=2""+n-2

-.therequiredsum=2"" +n—2.

~1 [4n+4]=(n-1)(2n+2) = 4, =0+ (n—1)(2 n—ﬁ)

Mathematics-X1 48
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Find the nth term and the sum to n terms of each of the following series:
4+13+28+49+76+.......

4+144+30+524+80+114+.......

4+10+18+28+40+.......

3+5+11429+83+245+.......

3+49+21+45+93+189+........

28+32+524+1524+652+........

el b 55 T B

54  Summation by the method of Partial Fractions

If the general term of a series consists of the products of the reciprocals of
two or more consecutive terms of an A.P., then the term can be split up into
partial fractions and the series can be summed. The method is illustrated in the
following examples. I i 1

1
Example 12: Sum the series 35+ 71+ 11151 {5.j0F " to nterms

Solution: Here, the factors in the denominators are the products of two successive
terms of an A. P 3,7, 11, 15, 19,

1
(4r—1)(4r+3)
Expressing a, as the difference of its partial fractions, we have
1[ 1 1
a =— -
4{4r-1 4r+3
By putting r=1,2,3,....(n—1),n in succession, we get

-~ rth term of the given series,a, =

0
It

i

]
&l
l§

Bl— p= B
I 1T | 1
| =
|
f =
" f

]
o

Mathematjes-X1 170
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1[ 1 1
=2\ 5T =
4{4n-5 4n-1

- _1[_1__ 1
" 4|/4n-1 4n+3

Adding column-wise, we get

i n
Ea -_[5-4n+3j| 3(4n+3)
3(4:+3)'

Example 13: Find the sum of the series:
1 1 1 . .
—_— .. .
T4t a7 g e o inhinity
1

(3n—-2)(3n+1)
Breaking it into Partial Fractions, we have
1 _ A A B
(Bn-2)(3n+1) 3n-2 3n+l

. The required sum =

Solution: ' Here 7, =

Multiplying both sides by (3n—2)(3n+1) , we have
1=A@3n+D+B(3n-12)

Comparing the coefficient of n and the constants both sides, we get
0=3A+3B (i)
1=A-2B (ii)

Solving (i) and (ii) we get A =§ , B=—=

———

re—t 1 1J 1 1]
" 3@r-2) 3G+ 3| 3n-2 3n+l

= o1& (] 1
and 3.7, '52 (3k—2—3k+1)

k=]

kal
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R T 1 (]
O 1Z3*23%32

l 1 1
— b ——+

il
C 2:5 5.8 811

2. Find sum of the series:

3. Find sum of the series:

—+—+—+... tO n terins.

. to infinity.

Find sum of the series:

_EXERGISE[5/4]

1. Find the sum of the following:

L+—]—-+L+... to n terms.

1: 3083 SHIFS .7,

(ii)

(iv) ——

+ .
4-13 13-22 22.31

+... to infinity.

= 1
‘??.: 9k* +3k-2

i 1

= 1
; K47k +12

e

REVIEWJEXERGISE'S] |

1. Choose the correct 6ption

(i) Ift, =6n+ 35, then tyy = _
(a) 6n-1 (b) 6n +11 (c)6n+6 {(d) 6n-5
(ii)  The sum to infinity of the series 1 +%+ 3%4- 319 + él-? + -
(a) 6 (b)2 (©3 (d) 4
(iii) Sum the series: 1+ 22 +3.22 + ..., +100:2%
(a) 992'% - (b) 1002'® () 99-2'%+ 1 (d) 1000-2'®
(iv) The nth term of the series 1-2 +2-3 + 34 + ... is
(a) @*-n) (b)) m*+n) (c)n®  (d)None of these
(v} The sum of n terms of the series whose nth term is 1+ 2"
@n+2"! ) @+1)+2°*! (c)n+2(2"-1) (d) None of these
(vi) Evalvate (3 +2), wherer=1,2,3,.... 10
(a) 2051 (b) 2049 (c) 2076 (d) 1052
1+2) (1+2+3
(vii) What is the nth term of the series 1+{ )+( 3 )+...”
+1 +1)(2n+3
@ 221 o n DS & 2 S ey ay () (2n3)

2

2

-
| NLathematic:
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(viii) Sum of n terms of the series 13 + gHIMCERE  T

10.

(2) n*(2n%-1) (b) 2% +30% (¢) n’(n-1)  (d)n’+8n+4
Sum the series to n terms 1-2+42-3+3-4+---

Sum the series 1-3-5+2-4:6-+3-5-7+to n terms.

- 1 1 1
Sum the series + + +...
1-4-7 4.-7-10 7-10-13

Sum the series 5+12x+19x2 +26x* +-+- to n terms.

Sum the series: —1—+—1—+—1—+... to n terms.
1.2 23 34

Find the sum of n terms of the series

(i) Sum the series: 1:2% +3-32+5-42++- to n terms.

(ii) Sum the series: 3.1245-22+7-32+4- to n terms.
Find the sum of n terms of the series whose nth term is

() n*+3" (i) 2n2+3n (i) n(n+1)(nt4) (iv) (2n-1)?
Find the sum of the first n terms of the series

(i) 3+7+13+214+31+ (i) 2+5+14+41+

Find the n* term and the sum to n terms of the series

1 Syl AL Ui U
1+(1+2)+(1+2+4)+(1+2+4+8)+
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1) PERMUTATION, COMBINATION
- AND PROBABILITY

1 1715
the studenis will be ible 10:

o i SRS, NPURSIE | - ||._._..|.._|._ .

Know Kramp's factorial notation to express the product of first n natural
numbers by n!,

Recognize the fundamental principie of counting and illustrate this principle
using tree diagram.
Explain the meaning of permutation of n different objects taken r at a time
and know the notation °P,.
Prove that °P; = n(n-1)(n-2) ... (n-r+1)and hence deduce that
!

] I;r n: :

(n—r)!
PP, =n!
0! =1.
Apply "P; 10 solve relevant problems of finding the number of airangements

of n objects taken r at a time (when all n objects are different and when some
of them are alike).

Find the arrangement of different objects around a circle.
Define combination of n different objects taken r at a time.

Mat-hema.ltics-):[. .
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¢ Provethe °C, = = _L and deduce that
r ri(n—r)!

- (-(o)-
- CHENOAS)

?' fn) ( n J [n+l]
U & + = .
o \ T o=l r
@ e Solve problems involving combination.
Bl o Define the following:

S = statistical experiment,

« sample space and an event,
lé i « mutually exclusive events,
A e equally likely events,
R o dependent and independent events,
I;J : « simple and compound events.
N . Recognize the formula for probability of occurrence o an event E, that
: P(E)=1(Q 0< P(E)LI

nS) -

e Apply the formula for finding probability in simple cases.

¢ Use Venn diagrams and tree diagrams to find the probability for the
occurrence of an event.

e Define the conditional probability

e Recognize the addition theorem ( or law) of probability
P(AUB) = P(A) +P(B)-P(AIB), where A and B are mutuaily exclusive
events.

e Recognize muitiplication theorem (or law) of probability
P(ANB) = P(A) P(BIA) or P(AN1B) = P(B) P(AIB) where P(B{A) and P(AIB)
are conditional probabilities.
Deduce that P(ANB) = P(A) P(B) where A and B are independent events.

e Use theorem of addition and multiplication of probability to solve related
problems

(0]
U
T
C
0]
M
E
S -
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6.1 Introduction

Counting is one of the most fundamental skills. People start to count
on their fingers when they are in kindergarten or even earlier. But how to count
quickly, correctly, and systematically is a lifelong course.

In order to study probability, it is first necessary to learn about combinatorics, the
theory of counting.

In this unit, we will develop techniques and formulae for counting the
number of objects in a set. These formulae are used in computer science to
analyze algorithms. They are also used to determine probabilities, the likelihood
that a certain outcome of a random experiment will occur.

6.1.1 Kramp’s Factorial notation to express the product of first n natural
numbers by n!

Factorial Notation

If n is a positive integer, the notation n! (read “n factorial”) is the product of all
positive integers from n down through 1.

n!=n(n-1)(n-2)-mmm- 3) @M

0!(zero factorial), by definition, 0! =1

: —_—s :
CT R () Technology )

The FirstiTen Eactorials ,.;R\S’ Most calcuiators have factorial
0! = NV keys. To find 5!, most calculators
it= QQ"\Q use one of the following;
21=2-1=2 AN Magy Scientific Calculators
M=3-2-1=640" sl
=432 0824 Many Graphing Calculators
51=5-4:3-2-1=120 S
6! =5i¢5;;}4"3 -2-1=720
7M=7-6-5-4-3-2-1=5040
81=8-7-6-5-4-3-2 1= 40,320
9=9.8-7-6-5-4-3:2-]1=362,880

(Note The Difference 1)) -

2:31 =2(3-2:1) =12
(2-3)!=6!=6:5-4:3:2:1=720

Mathematics_-XI
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Example 1: Simplify the following expressions:
] ! 1 '
a.& b 5! . | N 1 d.(n+]). .
70 2130 2141 313! n! (n-3)!
887!
Solution: a. TRETE
1 '
' 5! =5.4.3.___ﬁ=10
2131 213! -1
1 1 1 3 1 4 3 4
c. +—= et ——= +
2141 3130 21413 31314 32040 314.3!
_ 3 +‘4 _ 7 7
3141 3141 3141 144
| 1
d.(n+1).____(1r1+l).n.="_|_1
n! n!
.. n! =n.(n—l).(n-—2).(1'1—3)! Practice E]
(n=3)! (n-3)! 71

" =
- Evaluate each factorial
expression:

14! n
a. b.
212! (nal):

= n(n-1).(n—2)=n"-3n" +2n
Example 2: Write the following in factorial form:
1317 e (n—3¥n-2)(n-1)
(1)9-8-7-5 (i n(n—-4)
Solution: (i) 1317 =17'16-15-14'l3-12!' 13-6-4¢
9-8-7-5 9-8-7-6-5-4! 16:15-14-13-12!
_lﬂ 6-51-41-13-12! 17!-131-6!-4!
T o1 16-5E121 1611219151
(n=3)n=2)n-1) B (n-Dn—-2)n-3) _(nn-D(n =-D(n-3)(n-4)!
n(n—4) - n(n—4) n(n—4)(n—4)!
_ (n—=DYn-D(n—-2)n-3)n-35)!
~ n(n-D(n-2)n-3)n-4n-5Yn—4)!
B (n-Di(n-5)! (n-D(n-2)n-3)n-4)!
T nln-d! (n-4)!

_ (n=Dim-5)! (n-1)! ((1=DY)’ (n-5)!

ni(n—4! (-4 nl((n—4)Y’

(ii)

B et X
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1.  Evaluate the following. i

-t
@ Loy 3t (i (n-1) vy 10!
313141 5-41 (n+1)! (5;)2
2. Write the following in terms of factorials.
(1} 19-18:17-16-15-14 (i1) 2:4.6:-8-10-12
iii 2 i) mathnt2)
(iii) n(n ) ( 5
3.  Prove the following. |
: +9!
()it 3 P 5! (1i) (nt ) =n’ +9n+20
6! 7! 81 8! (n+3)!
4. Find the value of n, when
; nn)  12(n!) !{, nii S (nz1) 0
1 = A {
-5 (-4 (-9 (-4
5. Show that (j) ~—_ (2") 2" (1-3-5:+(2n-1)}
(ii) (Z"Tl)..z"(las (21 ~1)(2n+1))

6.2 Permutation

As we know that counting plays a vital role in many areas, such as
probability, statistics and computer science. In this section and in the next, we
shall look at special types of counting problems and develop general formulae for
solving them.

The following principle of counting will be helpful and basic to all our work.

6.2.1 Fundamental Principle of Counting

Let Ey, Es, . . . ,Ex be a sequence of k events. If for each i, E; can occur in my
different ways, then the total number of ways the events may take place is the
product myms., . . my.

This principle is also known as the multiplication principle.

Mathematics-X1
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Example 3: How many different 6-place vehicle number plates are possible if
the first 3 places are to be occupied by letters and the final 3 by numbers?

Solution: Since the first three places are to be occupied by the letters A,B,C,...,.Z

and the final 3 places by the numbers 0, 1,2,...,9.

Hence each event E;, i= 1,2, 3 occurs in m; = 26, i= 1, 2, 3 different ways
and each E,, i=4, 5, 6 occurs in m; = 10, i= 4, 5, 6 different ways. Then by the
fundamental counting principle the total number of vehicle number plates is

m;-My-m3-myMmsms = 26:26:26:10-10-10 = 17576000
Example 4: How many functions defined on n points is possible if each
functional value is either O or 17
Solution: Let the pointsbe 1,2, 3,...,n.
Since f (i) = 0 or 1 for each i =1, 2,3, ...,n. Hence each event E,i=1,2,3,...,n
hasm;=2,i=1,2,3,...,n possibilities. Thus by the fundamental counting
principle the total numbers of possible functions is
,nl.nb.’ns...mn= 2.2.2...2 =2“ .
Example 5: There are 5 roads joining A to B and 3 roads joining B to C. Find
how many different routes there are from A to C via B.

Solution: There are two operations to be performed in succession.
AtoB 5 ways
BtoC 3 ways
Number of routes from A to C =5x3=15

Example 6: How many 3.letter code symbols can be formed with the letters A, B,

C without repetition?

Solution: Consider placing the letters in these boxes.

Mathematics XI /
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B R S ) Akl S il -

We can select any of the 3 letters for the first letter in the symbol. Once
this letter has been selected, the second must be selected from the 2 remaining
letters. After this, the third letter is already determined, since only 1 possibility is
left. That is, we can place any of the 3 letters in the first box, either of the
remaining 2 letters in the second box, and the only remaining letter in the third
box. The possibilities can be arrived at using a tree diagram, as shown below.

TREE DIAGRAM OUTCOMES
SRS i
e o Ecrowom
P a nen pmmim.
A———B CAB
= < B—A CBA

We see that there are 6 possibilities. The set of all the possibilities is

(ABC, ACB, BAC, BCA, CAB, CBA}.
Example 7: How many 3-letter code symbols can be formed with the letters A, B,

C, D, and E with repetition (that is, allowing letters to be repeated)”?

Solution: Since repetition is allowed, there are 5 choices for the first letter, 5
choices for the second, and 5 for the third. Thus there are 5-5°5, or 125 code
symbols.

Example 8: How many 5-letter code symbols can be formed with the letters A, B,
C, and D if we allow a letter to occur more than once?

Solution: We can select each of the § letters in 4 ways. That is, we can select the
first letter in 4 ways, the second in 4 ways, and so on. Thus there are 45, or 1024
arrangements.

6.2.2 Explaining the meaning of permutation

An ordered arrangement of a finite number of elements taken some or all
at a time is called a permutation of these elements.

We use the notation "P. or P(n,r) to denote the number of permutations of n
elements taken r at a time, where r is a positive integer such thatr <n .

Now, we develop general formula for the solution of special types of
counting problems.

AR
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S =

6.23 "P.=n(n-1)n- 2)...(n—r+l)
Theorem: Prove that P =n(n-)(n-2)..(n—r+1) and hence deduce the

following: (i} "B = !

(n—-r)!
Proof: To find a formula for "P , we note that the task of obtaining an
ordered arrangement of n elements in which only r<n of them are used without
repetitions, requires making r selections. Therefore, for the first selection, there
are n choices; for the second selection, there are (n — 1) choices; for the third,
there are (n — 2) choices; and so on. Hence the events:

(i) "P,=n! (i) 0'=1

E, occurs in m; = n ways
E» occurs in mz = (n—1) ways
E; occurs in m3 = (n—2) ways

.

and  E,occursinm,= (n—(r=1) =(@-r+1)  ways
Thus by the Fundamental Counting Principle

"P = memynigenm, = nin=(n-2)(n—r+1)

(i) Since "P. =n(n-1(n-2)-(n—r+1)
"P = n(n—1)(n—2)-(n—r+l). (=)'
(n=nr)!
_n(n—l)(n—2)---(n—r+1)(n—r)! _ n!
a (n—r)! (n—-r)!

(i1) Since "P. =n(n-1(n-2)-(n-r+ 1)
Now, putting r=n in the above, we obtain:
"P,=n(n—-1)(n ~2)(n=n+1) =n(n-D(n- 2)1
=n(n-1)n-2)-321=n!
1

Gii) Since”P =n! then by using (ii), we obtain: " =n!
! (n—n)!

oré=l =01=1

e ———
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Example 9: How many distinct six digit numbers can be formed from the integers
1,2,3,4,.,9if each integer is used only once?

Solution: Since the total number of digits is 9 and each number we have to
find, consists of six digits. No repetition is allowed. Therefore, this is a problem

of permutation.
- The required number of six digit numbers =°P,

_9-876'543! _9-87-6-54-3!
n 3! - 31
=9-8-7-6:5-4 =60480

Example 10: How many different words can be made out of the letters of the
word “triangle”? How many of these will begin with t and end with e?

Solution:
(i) There are 8 different letters in the word “triangle”. Therefore, the number of
. . 8! 8! '
different words = °A,= = — = 8! = 40320
@-8)! 0!

(i) If ‘t" and ‘e’ occupy the first and last places, then we are left only with 6

different letters. Thus the number of different words in this case is

*P,;=6!=720
Example 11: How many different arrangements of 10 objects taken 4 at a time
can be made with one particular object (1) never occurs (ii) always?
Solution: There are 10 different objects and we are taking 4 at a time. Then
. wp 10

the possible arrangements are '°P, = T 5040 . (1)

(i) Since one of the objects never occurs, so we are left with 9 objects. Thus

1

the possible arrangements taking 4 at a time = °P, = © 9'4)| = 3024 2)

(i)  The possible arrangements that the particulac object always occurs is
obtained by subtracting (2) from (1), i.e. 5040 - 3024 = 2016
6.2.4. Permutations with Repeated Elements
Consider the example of finding the number of different 9 digit numerals
that can be formed from the digits: 6, 6, 6, 6, 5, 53, 5, 4, 3 and consider one such
numeral; 665566543 @)

s e r—— - n— r— - o
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With this ordering of the 9 digits, there are 4! Permutations of the digits 6
and 3! Permutations of the digits 5 which have no effect on the above numeral.
Therefore, there are 41-3! arrangements of digits in the numeral given in (i) which
do not result in a distinguishable permutation of the given nine digits. Hence if X
is the number of distinguishable permutations of the given 9 digits, then 4!-3! -X=9!,
where 9! is the number of permutations of 9 distinct elements taken 9 at atime.

X = i— =2520
413!

The above example shows that in case of rEpeated elements, the number of
permutations is reduced. Hence we have the following result.

Theorem:  The number of distinguishable permutations of n elements taken
all at a time, in which m, are alike, m, are alike, . . . and my are alike is
n!

mlm,l.m, !
Proof: Let X be the required number of distinguishable permutations. Now, if we
replace m; alike elements by m different elements, then the number of
permutations of m, distinct elements taken all at a time is m;!. Similarly the
replacement of my, . . . ,m alike elements by different elements give rise to mz!, .
. . my! permutations respectively.

Thus the simultaneous replacement of alike elements by different elements
increases the number of permutations to X. myl. mat. . .omy!

Since n = m; + my + . .. + mg, then the number of permutations of n
distinct elements is n!

n! .
. _ Ny - 1
X.mtml.m!=n! =X Lo, oy ( Remember f.)

n We usually omit those digits,
m,

Where X is generally denoted by, [ which occur once.

m,,my,...,

n n!
Thus ( ] =—
m,,my,..,my | ol tom !

Example 12: Find the number of different arrangements that can be made out of
the letters of the word “assassination” taken all together.
Solution: The total number of letters is 13, out of which 4 are s, 3 are a, 2 are
iand 2 are n, son= 13, my =4, my=3,m3=2,my=2
Thus the required number of permutations = " = B =13 _
m,, 1y, M, 1, 4,3,2,2 4131-212!
=10810800
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Example 13: How many eight — digit different numbers are possible using all of
thedigits 1,1, 1,1, 2, 2, 3, 47 -
Solution: The total number of digit is 8, out of which four are 1s and two are 2s,
Soheren=8,m; =4, my=2, X
AL n ( 8 8!
thus the total eight digit number = = =-—— = 840
m,m, 42) 4121

6.2.5 Arrangements of Distinct Elements Round a circle

We have been arranging elements in a row and have seen that 4 elements
can be arranged in a row in 4! = 24 different ways. Suppose we arrange these
same 4 elements in a symmetric circuiar pattern. For example let us arrange A, B,

C, D around a circle. One such arrangement is shown in Figure 6.1 and others

in Figure 6.2.
A B

D c
Figure 6.1.

Figure 6.2

Now to check, whether these four arrangements are different or not. Let us ignore
the positions of A, B, C, D and consider only their relative order as we go around
the circle in a specific direction. We see that these four arrangements are the
same. For example if we begin at A and move clockwise around any of the circles
we get the same arrangement, ABCD and then back to A again. Thus the four
different arrangements ABCD, BCDA, CDAB and DABC are not distinguishable
in a circular arrangement.

In general, if there are X distinct circular arrangements of four elements,
there would be 4-X arrangements of these elements along a row. But since the

number of arrangements along a row is 4! ,

41 431

then we have 4-X =4! = X=I=_4_.=31

[ —=— I ——————— e —y
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Extending this, we have the following:

The number of distinguishable circular permutations of n elements is (n-1)L.

In arranging keys on a ring or different beads on a necklace, it is agreed that two
arrangements are the same if one arrangement can be obtained from the other by
turning over the ring (or the necklace) is reflection of one another. Thus in case
of the Example 15 of four elements A, B, C, D, the following two arrangements
are the same under such conditions (reflection of one another).

Figure 6.3

Consequently, there are three different arrangements of four different keys on a
ring (or four different beads on a necklace), that is, the number of different

- 3!
arrangements is @bl 92— =3 - R
More generally, the number of different arrangements of keys on a ring (or

-
n different beads on a necklace) is (n 21)' .

Example 14: In how many ways can six people be seated around a circular table?

Solution: In this case n = 6, so that six people can be seated around a circular
table in (6 — 1)! = 5! = 120 ways.

Example 15: How many different necklaces can be formed by stringing eight
beads of different colors?

(n-1)!

Solution: The number of different necklaces is

_nt 71
So for n =8, we have %—l)— =22—' =2520 different necklaces.

Mathematics-X1
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1.

10.

11.

12,

Ihe.

14,

15.

Evaluate (1) °P, (i) P, Hia
Solve forn (i) "R, =56("R) (ii) "R, =9(""'P) "P, =600
Prove the following by Fundamental Principle of counting

)R =nC""P,)  (H)'B =""B+r("'B.)

In how many ways can a police department arrange eight suspects in aline up?
In how many ways can letters of the word ‘Fasting’ be arranged?

How many 4 digit numbers can be formed with the digits 2.4, 5, 7, 9.
(Repetitions not being allowed). How many of these are even?

How many three digit numbers can be formed from the digits 1, 2, 3, 4 and
5 if repetitions (i) are allowed (ii) are not allowed.
How many different arrangements can be formed of the word *“equation”
if all the vowels are to be kept together?
How many signals can be given by six flags of different colors when any
number of them are used at a time?
In how many ways can five students be seated in a row of eight seats if a
certain two students (i) insist on sitting next to each other?

(1i} refuse to sit next to each other?
How many numbers each lying between 10 and 1000 can be formed with
digits 2, 3, 4, 0, 8, @ using only once?

How many different words can be formed from the letters of the following
words if the letters are taken all at a time?

(1) Bookworm (ii) Bookkeeper Abbottabad  (iv) Letter

Find the number of permutations of the word ‘EXCELLENCE’. How
many of these permutations (i) begin with E (ii) begin with E and end with
C (iii} begin with E and end with E do not begin with E. (v) contain
two 2L’s together (vi} do not contain 2L’s together.

If five distinct keys are placed on a key ring, how many different orders
are possible?

In how many ways can 7 people be arranged at a round table so that 2
patticular persons always sit together?
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6.3 Combination

So for, we have been concerned with permutations, which are ordered
arrangements of elements of a set. Now, we focus our discussion on arrangements
in which order is not important that is, subsets of a set.

6.3.1 Let S be a set containing n elements and suppose r is a positive integer
such that r<n .Then any subset of S containing r distinct elements is called a

combination of n elements taken r at a time.
Notation: The notation, we use for the number of combinations of n elements
n
takenr at a time is "C, or (’J .
Example 16: Suppose S = (a, b, ¢, d}.Find the number of combinations by taking
3 letters at a time.
Solution:  The subsets of S taken three elements at a time are:
{a,b,c},{ab,d), {acd} (be, d}
Therefore, ‘C,=4
The distinction between permutations and combinations is that changing the
order of a set of elements gives a different permutation but the same combination.
For example in the above example there are four subsets of {a,b,c,d}, taken three
at a time , because °C; =4. But the elements of each one of the four subsets can
be arranged in a definite order in 3} or 6 different ways. Thus the total number of

different arrangements in a definite order in all four subsets is

4
64="p, or 3:'C,="R

4 !
or'C, = i ¢ ——i'———and we have the following important formula.
3t 31(4-3)!
!
6.3.2 Theorem: Prove that "C, = S LA And hence deduce that
ri(n—n!

(i) ("):1,@) ("]:1 (i) [n)=n,(iv) [ 4 )=n,(v) ("J{ " J
n 0 1 n-1 r n—r

Proof: To find"C, , we must find the total number of subsets of r elements each

of that can be obtained from a set of n elements. Since each of these
combinations (subsets) contains r elements, which can be permuted among
themselves in r! ways. Thus °C, such combinations will give °C,.r!

permutations. But we know that the number of permutations of n elements

Mathcr;laiics—XI' .
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taken r at a time is "P. "C,.r! ="p = =
. (n—nr)! ri{n—r)!
1
G) Ifr=n,then "C,=— " -1 _ 0!=1
' nl(n-n)! 0!
(ii) If r=0, then "Cozn_! =.n_!=1
0{n-0)! n!
| -}
(i) 1f r=1,then "C,=—orl _=P0=DI_
Nua-13 (n-=1!
| -y
(iv) If r=n—1,then"C, = 2 _nTDIQY
(n=DXn-n+1)! (@G-DL1I!
(v} Putting (n —r) for r, we have
n _ n! K\ i o
"otn-r)(n-n+r) (n-r)!r I
Example 17: Prove that "C, +"C,, = "™'C.
Solution:  Taking LH.S = "C +"C _
_ n! 4 n!
ri(n—r)!  (r=-DYn-r+1)! Did You Know ?

n! R n!
rir=D'n-r)t  (r=DYn—-r+D-r)!

n! 1 ]
= —+
(r=D¥n=r)'lr n-r+l

_ n! (n—r+1+r
T r-DIn-Pt rn—r+1)

(n+Dn!
rir=Dn-r+D(n-r)!

_ (n+1)! (n+ D! _
rln=r+h! rf(n+)—r]

The number of combinations
of n things r at a time is equal

' to the number of combinations

of n things a —r at a time i.e.
”Cr =" Cu-r .

Such combinations are called
complementary.

Put r = n, then "Cy="C, =1

="C =R.H.S

Mathematics-XI
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Example 18: From 12 books in how many ways can a selection of 5 be made,
(i) when one specified book is always included, (i) when one specified book

is always excluded?
Solution: (i) Since the specified book is to be included in every selection, we

have only to choose 4 out of the remaining 11.
Hence the number of ways ="'C,
_ 11x10x9%8
T 1x2x3x4
(ii) Since the specified book is always to be excluded, we have to
choose the 5 books out of the remaining 11.

Hence the number of ways="'C, = 11x10x9 3t =462
1x2x3x4%35
Example 19: Out of 14 men in how many ways can an eleven be chosen?

Solution:  The required number ="C,,="C, = 14x13x12 _4cy
1x2x%3

1. Solve the following for n. -

(i) "C, =36 Gy e, =6, (i) "C, =30."C,

Find n and r if "P, =840 and "C, =35

Find n when *'C, : "C, =36 :3

Prove that (i) "'C.+"'C,, ="C, (R iCI=naCH

How many (i) straight lines (ii) triangles are determined by 12 points,

no three of which lie on the same straight line.

Find the total number of diagonals of a hexagon.

Consider a group of 20 people. If everyone shakes hands with everyone

else, how many handshakes take place?

3. A student is to answer 7 out of 10 guestions in an examination. How many
choices has he, if he must answer the first 3 questions?

9. An 8-person committee is to be formed from a group of 6 women and 7
men. In how many ways can the committee be chosen if (1) the committee
must contain four men and four women? (ii) there must be at least two men?
(iit) there must be at least two women? (iv) there must be more women than men?

=330.

AR AR RN

-
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6.4 Probability

Unconscious application of probability theory is very wide and indeed,
practically every one is applying it without realizing. The phrases like “He is
reliable”, “He is a liar”, “He is not likely to come™ and so on are all probabilistic
and we use them by “applying” probability theory. Basically, probability
originated in problems related to games of chance and was developed~
mathematically by Pascal (1623 — 1662) and Fermat (1601 — 1665). Today,
probability has grown far beyond the area of games of chance and has
applications in genetics, insurance, physics, social sciences, engineering and
medicine.

Before defining probability, we define and explain certain terms which are
used in its definition.
6.4.1 (i) Statistical Experiment

Intuitively by an experiment one pictures a procedure being carried out
under a certain set of conditions. The procedure can be repeated any numbers of
times under the same set of conditions and upon completion of the procedure
certain results are observed. The experiments are of two types

(a) Deterministic experiment An experiment is deterministic if, given the
conditions under which the experiment is carried out, the outcome is completely
determined. For example if pure water is brought to a temperature of 100° C and
760 mm Hg of atmospheric pressure the outcome is that the water will boil.

(b) Random experiment An experiment for which the outcome cannot be
predicted except that it is known to be one of a set of possible outcomes. is called
a random experiment.

For example (i) Tossing a coin (ii) Rolling a die.

Since our interest lies in the random experiment, so in this text by experiment we
mean random experiment.

(i) Sample space and an event
The set of all possible outcomes of a random experiment is called a

sample space and is donated by S. The elements of S are called sample points or
outcomes.

For example {a) Tossing a coin once, then
S={H, T} where H and T are the possible outcomes.

(b)  Tossing a coin twice, then the possible outcomes in the sample space are
HH, HT, TH, TT.
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(c) Rolling a pair of dice, then we have the following sample space
S= {Gn:i,j = 1,2,3,4,5.6)

(L) @2 1,3) @4 15 (1,6)]
2,D) 2,2 (2,3) (2,4) (2,5 (2,6)
3D 32 33 G4 (35 G6)
4,1) 4,2) 4.3) @449 4,5) (4,6),.
5. 5,2) 5.3 5.4 (55 5.6
(6,1) (6,2) (6,3) (6,4 (6,5 (6,6);

Event: Let S be the sample space of an experiment. Any subset E of S is called

an event associated with the experiment. For example E = {HH, TT} is an event
associated with the experiment of tossing a coin twice.

(iii) Mutually Exclusive events

Two events are said to be mutually exclusive if they cannot both occur at
the same time. Mathematically, it is expressed as:

If AN B =¢, then A and B are mutually exclusive events.

For example rolling a die, let A be the event that even number has shown up
while B be the event that odd number has shown up and C be the event that a
number less than 4 has occurred.

Here S$=1{1,23,4,5, 6}

Let A = {even number has shown up } = (2, 4, 6}
B = {odd number has shownup } ={1, 3, 5}

and C = {anumber less than 4 has occurred}= (1, 2, 3}

Now AnB=¢=A and B are mutually exclusive while AnC={2} and
B n C ={1,3 ) showing that A, C and B, C are not mutually exclusive.

(iv)  Equally likely events .

Two events are said to be equally likely if they have equal chances of
happening. In other words, each event is as likely to occur as the other. For
example rolling a die we have S={1,2,3,4,5,6} and each simple event
Aj=(j:j=1,2,3,4,56} is as likely to appear as the other. Hence they are
equally likely events.




*”jH’Iﬂ.*:‘

) Slmple and compound events
Events of the form {s} are called simple events, while an event containing

at least two sample points is called a compound event. For example E; = (HH} is

a simple event and E; = { HH, TT } is a compound event associated with the

experiment of tossing a coin twice.

If the random experiment results in s ands e A, we say that the event A occurs or

happens. The kEJA ; occurs if at least one of (‘pid You Know

the A; occurs. The M A occurs if all Aj occur. l
]

If the event A occurs, then K(complement of A
relative to S) fails to occur.

6.4.2 Let S be the sample space of a random
experiment, and E be an event. The probability

For examplc lrollmg ardle, the
that an event E will occur, denoted by P (E) is ‘numberof outcomes

given by fnvorable (successful) to the
happemng of" event ‘of even
mteeersrare three ie2 4»"and’6l

WML B -

|
!

n( E
n(S

P(E) =

..._uJu.__.._. S TR

L—

the number of favorable (successful ) outcome

the total number of outcomes
no. of elements in the event E

no.of elementsinthe sample space §

Since E is a subset of S, then obviously

0 n(E)<n(S) Dividing by n (S), we obtain
0 < n(E) < n(E) o

n(s) n(S§) n(s)

r0 £ P(E) = |

Hence the probability of an event is always a number between 0 and 1 inclusive.
By the above definition, it is quite clear that P (¢) =0 and P(S)=1 that

is why ¢is called an impossible event while S is called sure or certain event. If E
and F are two events such that P(E)< P(F), then we say that F is more likely
to occur than E and if P (E) = P (F), the events E and F are equally likely.
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Example 20: (a) If a coin is flipped, find the probability that a head will turn up.
(b) If a fair die is tossed, find the probability that an even number

has shown up.

Solution: (a) HereS={H,T]
Let A = ( head has shownup } ={ H }
Since, the outcomes are equally likely, then using the formula:

n(4) 1

n(S) 2

(b)) Here $={1,2,3,4,506])
Let B ={ even number has shown up }={ 2, 4, 6}

P(A)=

Since, the outcomes are equally likely, then we have P (B)= AP 3 _1
: n(s) 6 2
Example 21: In a three child family what is the probability of having
(i) three boys? (ii) at most one boy ?
(iii) at least one boy (iv) exactly one boy ?

Solution: Sometimes a tree diagram is very helpful in constructing a sample
space S.

First Second Third QOutcomes
child child child
< B BBB
8 G BBG
B B BGB
G <:
G BGG
<: B GBB
B
< G GBG
G
B GGB
G <:
G GGG

Hence S = { BBB, BBG, BGB, BGG, GBB, GBG, GGB, GGG } and the
outcomes are equally likely. n(a) 1
@) Let A = { having three boys } = ( BBB ] then P(A)=n (5) =3

Math *:m‘dr DR
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(ii) LetC={ havmg at most one boy } = { BGG, GBG, GGB, GGG }
n(C) 4 1

n(S) 8§ 2

(iii) Let D = { having at least one boy }
= { BBB, BBG, BGB, BGG,GBB, GBG, GGB )

then P(C)=

then P(D)="{2)_7
n(S) 8
(iv) Let E = { having exactly one boy }= { BGG, GBG, GGB )
then P(E)="E)_3
n(s) 8
|

EXERCISE 6.4 | |
LetS = {1, 2, 3, 4, 5, 6} be the sample Space-g-Ji’..'rc.)Iling a die. What is the
probability of {ij Rolling a 57 (i) Rolling a number less than one?
(i1) Rolling a number greater than 07 (iv, Rolling a multiple of 3?
(v) Rolling a number greater than or equal 1o 4?7 |

A bag contains 4 white, 5 red and 6 green balls. 3 balls are drawn at
random. What is the probability that (i) All are green (ii) All are white.

A true or false test contains eight questions. If a student guesses the
answer for each question, find the probability:

(i) 8 answers are correct. (ii) 7 answers are correct and 1 is incorrect.

(iv) at least 6 answers are correct.

Three unbiased coins are tossed. What is the probability of obtaining

(1) all heads {i1) two heads (1i1) one head

(iv) at least one head {v) at least two heads  (vi) All tails.

A committee of S person is ta be selected at random from 6 men and 4 women.

Find the probability that the committee will consist of
(1) 3 men and 2 women (11) 2 men and 3 women.

T T T T
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" 6. If one card is drawn at random from a welil shuffled pack of 52 cards. 3
i Then find the probability of each of the following.
(i) Drawing an ace card, (ii)  Drawing either spade or hearts, 5
(1ii) Drawing a diamond card, (iv) Drawing a face card,
(v) Notdrawing an ace of hearts.
7. Two dice are thrown simuitaneously. Find the probability of getting:
(1) doublet of even numbers (ii) a sum less than 6 (iii) a sum more than&

(iv) a sum greater than 10 (V) a sum at least 10 (vi) six as the Er‘?)guct-

(vii) an even number as the sum (viii) an odd numberas the sum
(ix} a multiple of 3 as the sum {x) sumasa pgr&%number

b mn—

6.4.3 Laws of Probability
It is easier to compute the probability of an event from known

probabilities of other events. This is true if the event can be expressed as the
union or intersection of two other events or as the complement of an event. Some

basic elementary laws of probability are given below in the form of theorems.

6.4.4 Use Venn diagrams to find the probability for the occurrence of an event
IfAand B ' '
ficioint IfBC A
4 4

We know that if A and B are two sets, then the shaded parts in the following
diagram represent AU B .

The above diagrams help us in understanding the formulae about the sum of two
probabilities.

We know that:

P(E) is the probability of the occurrence of an event E.

If A and B are two events, then '

P(A) = the probability of the occurrence of event A;




P(B) = the probability of the occurrence of event B;
P{AUB) = the probability of the occurrence of AUB;

P(ANB) = the probability of the occurrence of ANB;

The formulae for the addition of probabilities are:

i) P(AUB)= P(A) + P(B), when A and B are disjoint.

ii) P(AUB)=P(A) + P(B)-P{ANB)

when A and B are overlapping or BC A.

Theorem: If A and B are any two events in a sample space S, then
P(AUB)=P(A)+P(B)-P(AnB).

Proof: From the Venn diagram, it is clear that

B

n(AUB)=n(A)+n(B)}~n(ANB)

andn( AN B) has been subtracted simply because it has been considered twice.
Now, by definition we have

n( AUB) =n(A)+n(B)-n(AﬁB)
n(s) n(S)

n{ B) o n(ANB)

P(AUB)=

+

n(s) n(S) n(S)
—P(A) + P(B) - P(ANB)
This law is generally called, addition law of probability.
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Corollary 1: If A and B are mutuaily exclusive events,
P(AuUB)=P(A)+P(B)
Proof: Since A and B are mutually exclusive events, then

AnB=¢ and P(AnB)=P{@)=0

Hence P(AUB)=P(A)+P(B)-P(ANB )reduces to
P(AUB)=P(A)+P(B)
Now, generalizing the above, we have the following:

Corollary 2:1f A, , Az, ..., A, are mutually exclusive events, then

P(A,quu---uAnJ=P(A, )+ P(A )+ + P(A,)

then

Example 22: One integer is chosen at random from the numbers 1, 2, 3, ..., 50.

What is the probability that the chosen number is divisible by 6 or 8 ?
Solution: Here $={1,2,3,---,50} and n(S)=50
Let A = { number is divisibleby 6 }= { 6, 12, 18, 24,30, 36, 42,48 }

and B = { number is divisible by 8 }
={8, 16, 24,32,40,48 } then AnB={24,48}

Now, substituting P(A):B%, P(B):% andp(AnB)=5_26

in the following, we obtain
6 2 12 _ 6

8
P(AUB)=P(A)+P(B)-P(ANB)=r + oo = =50 =70

Example 23: If two dice are rolled, find the probability of obtaining a total

of 7 or 11.
Solution:  Here S= {G.j)i.j = 1,2,3,4,56} and n(8§)=36
Let A = { atotal of 7 occurs }
= { (6,1), (5.2), (4.3), (3,4), (2,5), (1,6) }

and B = { atotal of 11 occurs }




={ (6,5), (5,6) } then AnNnB=¢

Now P{A}=3—66 and P(B)=-336-

Since A and B are mutually exclusive, so we have

6 2 _ 8
P(AUB)=P(A)+P(B) =x + = ==

=2

Complementary events

Suppose we divide a sample space S into two subsets (events) E and E’ such that
(i) ENE’'=¢ and (i) EUE'=§

Then E’ is called the complement of E relative to S and E and E' are called

complementary events.

Tiworem: IfE and E are complementary events, then P(E’)=1-P(E)

Proof: Since EUE'=S Then P{EUE')=P(S)

oo P(E}+P(E)=1, = EnNE=¢
or P(E')=1-P(E)

Example 24: A coin is tossed 6 times in succession. What is the probability that
at least one head occurs?
Solution: Tossing a coin 6 times in succession, we have n(§)=2°=64

Let E={atleastl Hoccurs] then E’ ={ noH occurs )}

and P(E’)= 6’ " there is only one outcome event , where all tails occur.
. 1 63
P(E})=1-P(E )=1-—=—"
(£) (E')=1-—=2
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6.4.5 Conditional Probability

The probability of an event may change if the information of the
occurrence of another event is given. For example, if an adult is selected at
random from certain population, the probability of that person having lung cancer
would not be too high. However, if information that the person is also a heavy
smoker is provided, then one would certainly want to revise the probability

upward.
Let A = { An adult has lung cancer }

and B ={ An adult is a heavy smoker }

Then the probability of an event A, given the occurrence of another event B, is
called a conditional probability and is denoted by P( AIB } .

For events A and B in an arbitrary sample space S, we define the conditional

P(ANB

probability of A given B by P(AIB)=_£P(—B)—)’ P(B)>0.
P(ANnB

Similarly, P(BIA)=—(P—(TW)-, P(A)>0.

Example 25: What is the probability of rolling a prime number in tossing a die,
given that an odd number has turned up?

Solution: HereS=1{1,2,3,4,5,6}
Let A= { a prime number has rolled }={ 2, 3, 51}

and B={ an odd number has tuned up } = { 1, 3,5}
then AnB={3,5}
We have P(B)=% and P(AnB)=%
P{ANB
Now, using the formula P(AIB)'=-L——), P(B)#0
P(B)
: (an)
_6_2 g P(BIA AR
P(AIB) 373 Since P( ) P(A)
6




or P(ANB)=P{A)P(BIA)

This shows that the conditional probability can be used in expressing the
probability of the intersection of a finite number of events and we have the
following theorem known as the multiplicative theorem.

If A and B are any two events in a sample space S then
P(ANB)=P(A)P(BIA), P(A)#0
=P(B)P(AIB), P(B)=0

The above theorem can be easily extended to a finite number of events.

For example in case of three events A, B and C it becomes:
P(ANBNC)=P(A)P(BIA)P(CIANB)

Example 26: An urn contains three red and seven green balls. A ball is drawn,

not replaced and another is drawn. Find the following.
(i) P(red and red ) (ii) P (redand green).
Solution: Total number of balls = 10

(i) Let A={the 1% ball drawn is red }
.and B = { the 2™ ball drawn is red )
So using the multiplicative theorem,

P(redandred)=P(AﬁB)=P(A)P(BIA)
Substituting P(A)=1—30- and P(BIA)=§

We obtain,  P( red and red )=%§ v_hilsh

(ii) Let C = { the 1* ball drawn is red }
and D = { the 2™ ball drawn is green }

So using the multiplicative theorem again.
P( red and green )=P(CnD)=P(C)P(DIC)




We obtain,  P( red and green )=—-—=—
109 30

6.4.6 Dependent- and Independent Events

In general P(AIB) and P(A) are not equal, However, there is an

important class of events for which they are, If P(AIB)=P(A), then the
knowledge of B occurring does not change the probability of A and we say that A
is independent of B. Similarly, if P(B1A)= P( B),we say that B is independent
of A. Thus two events A and B are said to be independent if the occurrence

(or non-occurrence) of one does not affect the probability of the occurrence

(and hence non-occurrence) of the other, otherwise they are cafled dependent.

Ilustrationl: In the simuitaneous throw of two coins, ‘getting a head’ on first
coin and ‘getting a tail on the second coin are independent events.

Ilustration2: When a card is drawn from a pack of well shuffled cards and
replaced before the second card is drawn, the result of second draw is independent

of first draw.
The following theorem gives the probabilities of simultaneous occurrence of

two independent events.
Theorem: If A and B are independent events, then P( AN B )= P(A)P(B).

Proof: Since multiplicative theorem gives that:
P(ANB)=P(A)P(BIA) (@)
=P(B)P(AIB) (i)

Further, A and B are independent, then we have P(BIA)=P(B) and

P( Al B)=P( A) substituting in { i) and (ii ) we get the required result:




Unit 6 | Permutation, Combination And Probability |
| SR S iy e T R ._;;..____.u_....-—u.._u...'__._.ﬂ_l.-'-a-nm____ e PR T A v

P(ANB)=P(A)P(B)

The above theorem can be extended to any finite number of mutually independent
events, If A, , A2, Ax, ..., A, are mutually independent events, then

P(A,nAznAgn---nAl)=P(Ale(Az) P(4)-P(4,)

Example 27: A space shuttle has four independent computer control systems. If
the probability of failure of any one system is 0.001, what is the probability of
failure of all four systems ?

Solution: Let E;={ failure of system i, i=1,2,3,4}
Since the events E;, i=,1 2, 3,4 are given to be independent, so using the
following.
P(E NE,NE, NE,)=P(E)P(E)P(E)P(E), i=123,4
=(10.001)" = 0.000000000001
(TS T X SO RR 2R (T2 01
1. Suppose events A; and B are such that P(A):—sz— » P(B)=

and P( AUB)=5. Find P(ANB).

2. If A and B are 2 events.in a sample space S such that
eV At ey 3 (=N e oy =
P(A)—E,P(B)—-g,P(AuB)-Z. Find (i) P(ANB) (ii) P(An B)
3. Given P(A)=0.5and P{AUB)=0.6, find P(B) if A and B are
mutually exclusive.

4. A bag contains 30 tickets numbered from 1 to 30. One ticket is selected at
random. Find the probability that its number is either odd or the square of
an integer.

5. A student finds that the probability of passing an algebra test is g . What
is the probability of failing the test?

6. In the two dice experiment, given that the first die shows 4, what is the
probability that the second die shows a number greater than 4 ¢

7. One card is drawn from a pack of 52 cards, what is the probability that the
card drawn is neither red nor king.

TS

_ — — - P e ———

T

' | |'I H I.I' ;Fi!a;hpmatlcq';}_{l-t-

e Sael b ||I il i"
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8. If a pair of dice is thrown, find the probability that the sum of digits is
neither 7 nor 11.

9. Ajmal and Bushra appear in an interview for 2 vacancies. The probability
of their selection being % and % respectively. Find the probability that

(i) both will be selected (ii) only one is selected
(ii1) none will be selected (iv) at least one of them will be selected.

10. A basket contains 20 apples and 10 oranges out of which 5 apples and 3
oranges are defective. If a person takes out 2 at random what is the
probability that either both are apples or both are good?

REVIEW EXERCISE 6

1. Choose the correct option

(1) In how many ways can we name the vertices of a pentagon using any
five of the letters O, P, Q, R, S, T, U in any order?
(a) 2520 (b) 9040 (c) 5140 (d) 4880

(i)  How many two-digit odd numbers can be formed from the digits
{1,2,3,4,5,6,7} if repeated digits are allowed?
(a) 14 (b) 42 (c) 28 (d) 21

(iii) How many six-digit numbers can be formed from the digits
{2, 3, 4,6,7, 8} without repetition if the digits 3 and 7 must be together?
(a) 120 (b) 180 (c) 144 (d) 96

(n+2)(n-2)!

(n+1))( n-1)! (a41) ( )
n+l n+2
-3) (b -1 iy ——
(v)  In how many different ways can 5 couples be seated around a circular
table if the couples must not be separated?
(a) 768 (b) 724 (c) 844 (d) 696

(vi) A committee of 4 people will be selected from 8 girls and 12 boys ina
class. How many different selections are possible if at least one boy
must be selected?

(a) 2865 (b) 3755 (c) 4225 (d) 4775

(iv)  Evaluate

Mathematics-X1
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(vii} The number of all possxble matrices of order 3x3 with each entry 0 and

1is:
(a) 18 (b) 27 (c) 512 (d) 81

(vili) How many diagonals ¢an be drawn in a plane figure of 8 sides?
(@) 21 {(b) 20 (c) 35 (d) 81

(ix) IfP(A)=%,P(B)=O,thenP(AIB) is

(a)0 (b) —;— (c) not defined d 1
(x) IfAand B are events such that P(A|B)= P(B|A) then
(@) ACBbutA#B (b)A=B ()AnB=¢ () P(A)=P(B)

() If 2C=2C,,; findr. (i) If"*C="8C,,; find'C,.

2
56 54 b :
3. P P =30800: findr.

4. In how many distinct ways can x' y3'zj be expressed without exponents?
5

. In how many different ways can be six children seated at a round table if a
certain two children (i) refuse to sit next to each other? (ii) insist on sitting
next to each other?

6. Six people including Faisal and Saima are to be seated around a circular
table. Find the probability that Faisal and Saima are seated next to each

other.
7. 1£P(A)=08,P(B)=05P(BIA)=04,
find ()P(ANB) (ii)P(AIB) (il ) P(AUB).

8. How many 6-digited telephone numbers can be constructed with the digits
0,1, 2, 3,4,5, 6, 7, 8 9, if each number starts with 35 and no digits
appears more than once.

9. How many numbers greater than a million can be formed with the digits
2,3,0,3,4,2,3?

10." A party of n men is to be seated round a circular table Find the probability
that two particular men sit together.

11. Given the following spinner, determine the probability:
P (Orange)
P (Red or Green)
P (Not Red)
P (Pink)
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MATHEMATICAL INDUCTION
AND BINOMIAL THEOREM

r
L)
{
|
i

Part 1

L4 ZmoucC —-wm

Alter reading this unit. the siudents will be bl

Describe the principle of mathematical induction.

e Apply the principle to prove the statements, identities or formulae.

e Use Pascal’s triangle to find the expansion of (x+ y-)“where n-is-a small
positive integer.

e State and prove binomial theorem for positive integral index

e Expand (x+y)" using binomial theorem and find its general term.

e Find the specified term in the expansion of (x+y )y

e Expand (1 +x)" where n is a positive integer and extend this result for all
rational values of n. .

s Expand (1 +x)"in ascending powers of x and explain its validity/
convergence for [x| < I where n is a rational number.

e Determine the approximate values of the binomial expansions having indices
as -ve integers or fractions.

() 7= =, 22l 220 ngl [

;) [pa) £2 () (A=) =5 (o)

Mathematics-X_I




Unit 7 | Mathematical Induction And Binomial Theorem

7.1. Introduction
| To understand the basic principles of mathematical induction, suppose a
set of thin rectanguiar tiles are placed as shown in the following Figure (7.1).

When the first tile is pushed in the indicated direction, all the tiles will fall,
To be absolutely sure that all the tiles will fall, it is sufficient to know that

{a) The first tile falls, and

(b) In the event that any tile falls its successor necessarily falls.

This is the underlying principle of mathematical induction.

We know, the set of natural numbers N is a special ordered subset of the real
numbers. In fact, N is the smallest subset of R with the following property.

A set S is said to be an inductive set if 1€S and x +1€S wheneverx€S.

Since N is the smallest subset of R which is an inductive set, it follows that

any subset of R that is an inductive set must contain N.

Mathematical induction is one of the developed techniques of proof in the
history of mathematics. It is used to check conjectures about the outcomes of
processes that occur repeatedly and according to definite patterns.

For example:
IT+3+5+.caccvvcceee +(2n=1) =n’ (1)
T+2+34 ..., +n = 1’-(-":—1) (2)
12422 43% 4 ... +n’ = nr+1DQ2n+1) (3)

2
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are all propositions, statements which involve the natural number n. Equation (1)
above asserts that the sum of first n positive odd integers is equal to the square of
n. We see that the L.H.S. of (1) reduces simply to:

=1 if n=1
I+3=4=2° if n=2
1+3+5=9=3 if n=23 andsoon.

It is impossible to verify (1) for each n e N, because it involves infinitely many
calculations which never end. To avoid such situations, the principle of
mathematical induction is applied.

7.1.1. The Principle of Mathematical Induction
The principle of mathematical induction is stated as follows.
Let P(n) be a property that is defined for integers n, and let a be a fixed integer.
Suppose the following two statements are true.
1. P(a) is true.
2. For all integers k= a, if P(k) is true then P(k+1) is true.
Then the statement for all integers n= a; P(n) is true.

The principle of mathematical induction is explained through the following
examples.

Example 1: Prove that foreveryneN, 1 +2+ 34T +n= "[";'])
Solution: Step 1. For n=1, the statement becomes
Jg
1= 1(12 2 ~ basis (p(1))

Thus the statement is true for n =1
Step 2.  Let us assume that the statement be true for n=k€& N, that is, we assume

kk+ 1)
2

. | =inductive hypothesis (P(k))

1+2+...+k=

Step 3. Letn=k+! and consider

(L+24 R+ (k+1) =ﬂkT+Q+(k+l)

(adding k+1 to both sides of P(k))

Mathematics-XI
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=k(k+1)+2(k+l) _ME+ D +2(k+ 1)

7] D 2
_ (k) + 1) _ (Rt Dk+2)
2 2

Which is just the form taken by the proposition when n = k+1. So the above
proposition is true for n=k+1 and thus by the principle of mathematical induction,
it is true for all positive integers n.

Example 2: (i) Find 2+4+6+...... +500

(ii) Find 5+6+7+8+...... +50

(iii) Find an integer h>2, find 1+2+43+.....+(h =1
Solution:
(1) 2+4+6+---+500 = 2- (142+3+--+250)

= 2.( 250'251) (by applying the formula
2 for the sum of the firstn
= 62.750 with n =2§0)

(1) S+6+T7+8+-+ +50 = (142434+-- +50) — ([ +24-34+4) (by applying the formula

" 50-251 for the sum of the firstn
=& ¢ with n =50)
= 1265 {by applying the formula
for the sum of the firstn
with n=h— 1)
h—1}).| (h—1)+1 h—1).h
(iii) 142+3+---+(h—1) = ( )[(2 ) ]= ( 2)
T
Example 3: Prove that 12422432 4... 4+ % = Ll 1')6("’! t),
Solution: Step1. Forn =1, the proposition becames
13=1= 1(””(62']“) - ”33 = 1. Thus it is true for n =1
Step 2.  Suppose the proposition is true for n = &, then
124224374 b k? = k("”)éz"‘“) @

‘Mathematics-X1
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Step 3. letn=%+ 1 and consider

(1 y Adding (k+1)2t
124224324... +k2+({c+1)2 = k(k+ I)‘fzk *+1) +(k+1)? l(:aoth Eﬂé;{,f)(i,;’
_ kRAD@EAD+6(k+1)" _ (k+ k(2K +1) +6k +1))
6 6
_ (k+D{2k° +k+6k+6)) _ (k+1)(2k2+7k +6)
6 6
_ (k+D(k+2)(2k +3)

6
Which is just the form taken by the proposition for n = k + 1. So the above
proposition is true for n = k+1 and hence by the principle of mathematical
induction, it is true for all positive integer n. ‘

It must be noted that the application of the principle of mathematical induction is
not limited only to P(n) stated by means of an equation. The principle can also be
applied in cases where no equation is involved as we shall see in the following ‘

examples.
Example 4: Show that a-b is a factorof @” — " for all positive integer n. |
Solution: To show that @ — b is a factor of a” — b", we will use induction on n.
Step 1. Letn= I, then a"—b" = a — b and since a — b divides a— b, so a— b ‘
is a factor of @ — b. Therefore the above statement is true for n = 1.
Step 2. Let the above statement is true for n = k then a-b is a factor of a*-b*,
— a-bdivides a* —b* and as such we can write
a*-b*=(a-b)Q........ (1) where Q is the quotient.
Step 3. Let n =k + 1 and consider a**'— b**'. We can write
a*' —b*'=a*a-b'b (Adding and subtracting the term ab')
=a*a—ab* +ab* -b*b
=a(a*-b*) + b*(a-b)=afa-b) Q + b* (a—b) (Using 1)
=(a-b)[aQ +b"]
=  a-bdivides a*"'-b*"" with quotient aQ + b*

=  a-bisafactorof a*"'-p"" ‘
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Therefore the above statement is true for n = k + 1 and hence by the principle of
induction it is true for all positive integer n.

Example 5: Prove that if n is a positive odd integer then x + y is a factor
Of xn + yn

Solution: Since n is given to be a positive odd integer, so we can write

2m-1 2im-t

+y

To prove the above statement, we will use the method of induction on m.

n=2m-J/ where m is a positive integer. Therefore x"+y"=x

Step 1. Let m = 1, then ™ + y*™/ = *"" + y*7/ = x 4 y and since x + y
divides x +y, so x + y is a factor of x + y. Therefore the above statement is true for
m=1. T
Step 2. Let the above statement is true for m = k then x + y is a factor of
'Zk l+y-k =]

=  x+ydividesx*™" 4y

So we can write x4+ y*! = (x+3) Q0 (1) where Q is the quotient.
Step 3. Now let m=%k+1 and consider

ks 2. = 4 s
xz[k-t-l) 1 2{k+1}—l I2k+ I 2L+2 xzk 1+2+y2k I+2=x Lx +y-k -1 yz

=x2k—lx +y..t lxl y2k-l. x’.’. +y2.l;-ly2

= x [xlk -1 '.!k—I] +y2k—|(y2_x21)
= x (x+y)0 + v (y=x){y+x) (Using 1)
= x2 (x+y)0 + y*7 (y=x)x+y)= (x+y) [x* Q + y*!

r xﬂk‘b”—] + y.?fk-!-”—l = (x+y) Ql Where Ql - .1_2 Q +} k-1 (y___x)
)12(k+”—]

k-1

(y-x)]

= x+y is a factor of X%+ _

So the above statement is true for m = k+! and hence by induction it is true for all

positive integral values of m.

Therefore x+y is factor of x" +y" where n is a positive odd integer.

7.1.2 General (extended) form of principle of Mathematical Induction
Sometimes it happens that a given statement and proposition does not hold

for first few positive integral values of n but after those values of n it becomes
true; For example let us consider the statement n” > n+3
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We see that when n=1then 1 >1+43 or 1> 4 which is false.
Whenn=2 then 2%>2+3and4>5 which is again false.

When 1 = 3 then 32> 3 + 3 or 9 > 6 which is true. That is, the above statement is
false for n = 1 and 2 but is true for all values of n greater than 2.

Similarly if we consider the statement n’>4dn* +n+1
then this statement is not true for n = 1,2,3,4 but it becomes true forn = 5 and
higher values.

In such situations the principle of mathematical induction is defined as under:
Let P(n) is a given statement or proposition such that.
(i) P(n) is true for n = m, where m is the least positive integer.
(ii) If P(n) is true for n = k where k > m then p(n) is also true forn=k+1
We then say that P(n) is true for all integral values of n 2 m.
This is called general (extended) form of the principle of mathematical induction.

Example 6: Provethat n’>d4n’+n+Iforn25
We are to prove that n’s>4n® +n+1  fornz3

Solution: In this case our induction will start from n=5
Stepl. Let n=5thenn’ =5 =125 and
4n’+n+l =4(5)* +5+ 1 =100 +5 + 1 =106
Clearly 125 > 106 so the above statement is true for n=5
Step 2. Let us assume that the above statement is true for n=k= 5 then,
B>+ k+ 1 (1)
Step 3. Now let n = k+1, then n’ = (k+1)’
and so (k+1)? = k> +3k> +3k+1> 4k +k+ 143k * +3k+1

= (k+1)*> 4k* +3k* +4k+2 (using (1))

= (k+1)3> 4k> +3kk+4k+2=> (k+1)* > 4k* +3k-5+4k+2 as k=3

= (k+1)>> 4k* +15k+4k+2 = (k+1)*> 4k* + Yk+6k+4k+2
= (k+1)> 4k* + 9k+10k+2 = (k+1)°> 4k + Yk+6k+4k+2
= (k+1)> 4k* + 9k+6 (as 6k+4k+2>6)

= (k+1)®> 4k* +8k+k+4+2 = (k+1)*> 4k* +8k+4+k+2
= (k+1)> 4k* +2k+]) +k+1+] = (k+1)*> 4(k+1)> +(k+1)+1

Which is of the form (1) for n = k + 1, so the given proposition is true for n=k+1,
thus by induction it is true for all n 2 5.
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Example7: Prove that 2" <[2"} for n >1
]

Solution: We are to prove that 2" < (21 ) forn>l.......... (1)

Step 1.
Letn=2,then2"=2"=4 and['n] [2-2J = (

ta

n 2 A4-23 22 4

4 4 3.
J d | 432 24 _ .
s ]
Therefore 4<6 and once 2" <("") is true forn =2
n

Step 2. Let us suppose that the above assertion is true for n=k for k>1, then
24!
2 <(2AJ or 28 A

k kW 2k~k)!
"ok
i 2 I & (2)
k'k!
Step 3. Let n = k+1 and consider 2*', we can write
) Pt Pl 2 1)
- eyl W ................... (3)
(Ck+2)(2k+1)  2(k+D)(k+k+1)  2(k+k+1) _ k +k+]
(k+1) (k+1)° k+1 k+1 k+1
=2[L l]— -35-+ 2>2ask> 1
k+1 k+1
=>12[< —(-%’L—%H—l) From (3), we have
(L+l)
2k+1<2k!-2< 2k (2k+2)(2k+]D) oF 2;;,;1':(2k+2)(2l.-+l) 2k!
KikWT k- kT (kD) . kYK +1) k'(k+1)
kgL (2+2)! i o (2k+2)! ‘
kWk+1) Kk +1) k+D!(k+1)!

24 <[2::12] which is of the form (1) when n is replaced by k+1.
So the given statement is true for n =k+1 and hence it is true for all n > 1.

2n
Thus 2"<( ] forn>1.
n
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Establish the formulas given below by mathematical induction.

i.

T,

10.

1.

12,

13.
14.

15.

24+4+6+--+2n=n(n+1)

1_+5+9+ ........ +(4n-3) = n(2n-1)

346+9+....... +3n = 3"(";1)
347+11+--+(@n-1)=n(2n+1)
B+2+3 +tn® = [”_(”Ll).]z
2
D + 22 + 3@ +--+n@) = (n +D-1
12+23+ 34 +00eeeen. +n(n+l) = i‘,(_"*_‘;("_*ﬂ
1SN 24 5 2 F— +2m = 2]
1 1 1 1 1 [ 1]
—_— G — = e +— = — |i—
9 27 3" 2 3"

0 0059
(ol ) - (5

Show by mathematical induction that

R 10" —9n-10

iy ——— is an integer. —_ is an integer.
M =55 g (ii) = g

(i 2">n VneN. (ii) n!>n’ for every integern= 4
(i) Show that 5 is a factor of 321122 where n is any posmve integer.

(ii) Prove that 22" _] is a multiple of 3 for all positive integers.
Show thata + b is a factor of a"¥" for all even positive integer n.

Mathematics-X1 .
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7.2  The Binomial Theorem

In algebra a sum of two terms, such as a + b, is called a binomial. The binomial
theorem gives an expression for the powers of a binomial (@ + b)", for
each positive integer n and all real numbers a and b.

7.2.1 Statement and proof of the binomial theorem
The binomial theorem in its explicit form is stated as under.
Theorem: If a and b are any two real numbers and n is a positive integer, then

. .
(a+b) =| "] ah’ + ("] a™'p' +("J a” b +....+ ["J a""b’+...+["] a’b"
\0 1 2 r n

which more compactly can be written in summation form as;

(a + b)n = i [:‘) a" iyl

i=0

Proof: Mathematical induction provides us the best way for confirming the
validity of the binomial theorem.

(a+b)" = [:) a"s" + [;’J a 'y + [;J a0+ (:’] a"th .4 (::) a'b"...... (i)

Step 1.If n =1, then from (i), we obtain

(a+b)i= (:)J a‘b°+(:]a"‘b’ =a+b ( C’szz I)

which is true. Thus the statement is true for n = 1
Step 2.Suppose that the statement is true for n =%, then

(a+b)* =(§J a"b°+[;"] a"“b'+@ a*'?‘b2+...+[k] a* rb'+...+m a’ht ......(i1)
r

Step 3. We now prove that the theorem is true for n = &£ '+ 1. Multiplying both
sides of equation (ii} by (a +b), we have

(a@+b)(a + b)*=(a-+b) [(gjakbn+(f) a"-'b‘+(’;) a2y | ..+(k]a"”'b’... + (”z)a%*]

= (a+b)* = [[A) a**1p0 + [ "b'[ 1(1" B2 +.. +( ] a MY L+ (k)abk:l
0 e k

+|:(:;] akb +( ) k 1b2 (;J k— Ib3+ +( ] k-rbr+1 ey [i)aﬂbkﬂ]

ﬁlathematics X1 A
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B A R AL e —
)6 e el
We know that ({’;){";']:1 and @:[I’::)(: J+(’:)=(":']for 0<r<k,

therefore.

(a+b)* = k+l a**p + Al atb+ ¢ B+ k+l ak+1"b'+---+[k+l) a’s**!
0 1 2 r k+l

which is of the form (i) forn=k + 1

So the given statement is true for n = k + 1 and thus by the method of induction it

is true for all positive integers n.

7.2.2 Properties of the Binomial Expansion

The expansion of (a + b)" has the following properties.

(1) The number of terms in the expansion of (a+b)" are n+1 i.e. the number of

terms are one more than the exponent n.

Thus the expansion of (a + b ¥ will contain 8+1 =9 terms.

(i)  In the expansion of (a + b)" the first term is 45", the second term is

n a"'p'and the third term is &2:11 a™2%* and so on . In each term the exponent of

a decreases progressively by 1 and the exponent of b increases progressively by 1,
but the sum of the exponents of @ and b in each terms is always equal ton.

n

n—r

(iii))  In the expansion of (a + b}" the terms (") a" " and ( Ja’b”" are
r

equidistant from the beginning and the end. For ["J a"~"b" is preceeded by r terms
r

) a"b""is preceded by n — r terms and
n-r

and followed by n — r terms while ( "

n! n!

followed by r terms. Also since [ 4 J = = = (")
-

St Am-nt \r
So the coefficients of terms equidistant from the beginning and end are equal.

(iv)  In the expansion of (a + b)" , if n is even, the number of terms are odd and
there will be only one middle term. If n is odd, the number of terms are even and

there will be two middle terms.

Mathematics-X1
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v) Fornevenin{a + b)", the (#) th term is the only one middle term and

3\
for n odd the (1;—1) th and (":3 th terms are the two middle terms.
=2/

(vi) In(a+b)" if bis replaced by —b then (a —b)" has expansion of the form
{
(a-b)" = (") a"bn—(") b+ "} a2 AVESEE (”] ap"
0 | 0 n

or(a-b)" = a"—(f) a™'p +[;J a2 (=1 D"

We note that in the expansion of (a — b)" the terms are alternately positive and
negative.

(vii) Inthe expansion of (a + b)" the (r+1)th term which is (
called the general term and is denoted by Try.

1
Thus Ty = U 0T = T g
r

ri(n—r)!

n) a"~"b" is usually
-

We note that for using binomial formula for given value of n, in the expansion of
(a+b)", the most important task is to find the binomial coefficients

n n n
() i e
7.2.3 Pascal’s Triangle
Consider the following expanded powers of (a + b)', where a + b is any
binomial and # is a whole number. Look for patterns.
(a+b) =1
(@+b)=a+b
(a + b = a* + 2ab + b*
(a+ b)Y = a® + 3a*b + 3ab? + B}
{a + b)Y = a* + 4a’b + 6a’b? + 4dab® + b*
(a + b)Y = a° + 5a*b + 10a°b* + 10a** + Sab* + b°
Each expansion is a polynomial. There are some patterns to be noted.
(i) There is one more term than the power of the exponent, n. That is, there are
n+ | terms in the expansion of (a + b)".
(ii) In each term, the sum of the exponents is #, the power to which the binomial
is raised. .
(iii) The exponents of a start with n, the power of the binomial, and decrease to 0.
The last term has no factor of a. The first term has no factor of' b, so powers of
b start with 0 and increase to n, i

Mathematics-X1
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(iv)The coefficients start at 1 and increase through certain values about “half-way "
and then decrease through these same values back to 1.
The above binomial expansions can be written in the following triangular form

1 ( Did You Know ﬂl

a+b : )
Pascal’s triangle is most

1 coefficients of the
a* + 4a’b + 6a%b? + 4ab® + b* binomial expansion
& + 5a'b + W0aih? + 10a%b* + 5ab* + b° (a+b)"whennisa

For each of the above expansions, we write down the  small number.
binomial coefficients in the following fashion

n Values of binomial coefficients
0 1

1 1 1

2 1 2 1

3 = J3%e 3 = ]

4 1 4 6 4 1

5 1 5 10 10 5 1
The above configuration of numbers is called Pascal’s Triangle.

Example 8: Find the expansion of (x+ y).
Solution: By the formula,

(x+ y) =2+ C X y+°Cox'y + C,°y* + SC 7y + SCoxy’ + 5C,y°
= 46X y+15x'y: +20x°y* +15x7y* +6xy° + e
On calculating the value of °C,, °C,, °Cy, ...

Example 9: Find the 6th term in the expansion of (3x +2y) =
Solution: Let Trth term be the sixth term of the expansion (3x+2y)”. We

remember that the T..th term for the expansion of (a + b)"is T,+|=(':] a" 'y
So, for the given expansion (3x +2y)"

T,+.=(12] (3x)"" (2y)’. Here we have n =12, a=3xand b = 2y
r
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Since we are interested in finding the 6th term i.e. T, so choosing r = 5 and

~ putting in the last result , we have,
12!

' 12 2t
T,, =T6=[5 J(Sx)" S (2y)° = T, = 2502

= 2ALIO98 70187 x32x7y° = Ty = 119-8:2187-32')
1.2.3.4.5.7!

=T = 55427328 x'y°
9

Example 10:  Find the coefficient of x° in the expansion of (2x2=2}"
X

=k

Solution: Let T, of (2x*~2)" be the particular terms containing x°.
X

Now for the given expansion (2x>—3)"
x
Tr+l=[]0J (2 10" (__é_)rz_ (10)2|o-r )1 (_l)r-i:_
r S ( x
- (_l)r (10)21(}-.— ] 3,Lx2(}-2'r P A= (—l)r (10}2")_,. | 3r.x20__2r_r
r r

Tr+|= (_l)r [IOJZ -r 3 3 r.x2(l—3r (1)
r

But this term contains x” and this is only possible if x = x*and thus 20-3r =5
=3r=20-5 or3r=15 = r=35 Putting this value of r=35 in (1) we get.

10 . 10
Ty, =Te=(-1)° (5 ) W 1355200 =Te=(-1)° [5 ] 2% 3%

So the required coefficient is (~1)° [150) 25.3% =— % 32243

10-9-8-7-6-5!

Required coefficient = —
1-2:3-4-5-5!

-32.243, that is the required coefficient of

x® =-1959552

3x

9
Example 11: Find the term independent of x in [-z-xz——]-;)

g9
Solution: Let Trith term of (%xz—};l——J be the particular term which is
] X

independent of x. The Teith term for the above expansion is
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NG e e (9Y 3 N s ao | b
T= () () <L) =52
_ r 2Y 3 . 1 18-2r -r r 9 3 e 1 18-2r=r
- () e merla) 5
_ (%Y 3 il T
-v()3) 5 (1)

But T, thterm is free of x and this is possible if x
=3r=18andsor=6
Thus T.yq = Tee = T4 i.e. 7th term of the given expansion is independent of x .

_ 6(21(3 Ll 18- _ A 3?1
Tr=¢D (6)[5) F* CenT F !

Y e e T — e ——

18-3r

=x"giving 18 -3r=0

9
Thus the 7" term of the expansion (%xi—-;—) is independent of x and its value is% .
. X

10
Example 12: Find the middle term in the expansion of (5+3':) !

x d

10
Solution: Since in (£+£J , n = 10 which is even, so that total number of terms in
X a

the above expansion = 10+1 = 11. Thus it has only one middle term which is

[";z)ﬂl term = (10;2) th term = 6th term.i.e. 6" term is the middie term
Now T,,, for (£+2)" is given by
vk a
T 10 A \N10-r g X N1 : -
=100 (2)%(Z)". Putting r=5
r X a :
10Y aV(xY 10! {&*\(+*)_ 1098765
- —|ll=l=z=—. === ———= 252

Weget T (5 )(x) (a) 515! (_:5] [as} 511-2:3-4.5
So the 6" term of (2+%) 10 is the middle term and it is 252.
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10.

11.

EXERCISE 7.2

Expand by using Binomial I.heorern

) [xz-iy @ (1+n) G (‘/;Jrﬁ)

Find the indicated term in the expansions.

5

[11] 4
()4" term in (2+2)" (i)8™ term in [%——?-’-] (i11) 3™ term in (X2+———1—-)
¥ X

Find the term independent of x in the following expansions.

9 10 1
. [4al . 3 1
o(5-2) ol i fx5)
Find the coefficient of
T PRI 20 (R | W bY’
(A)ix m(x —x) (= in| 2 =2 (iii) @b’ in | 2a——
55 X 3

Find the middie term in the expansion of:

8 a%9 10
{1}( +bx) (ii) (3x_-;_} (iti) (3x2_%,:

2
Find the constant term in the expansion of LZ\/_ \/_J
Find

(i) (2+£)5+(2-\E)s (i) (142) ~(1-v2)" (i) (a+b)° +(a=b)°

Find the numerically greatest term in (3 —2x)'°, when x = 2

Find the numerically greatest term in the expansion of (x—=y)°
when x=12 and Yy =4,

Prove that sum of Binomial coefficients of order n = 2". Also prove the

sumn of odd binomial coefficients = sum of even Binomial coelficients =2"".

re

Consider (1+x)" and take ["]: @
r

Show that C +2C, x+3 C,x? + ........ +nCox"" = n(14x)""

- Mathematics-X1
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73 Binomial Series

7.3.1 Expansion of (1 + x)" where n is a positive integer
By Binomial theorem, for any two real numbers a and b and for a positive
integer n

(a+b)" =a" +na™"' b+ "(';' D gr2p? +I‘("_’1£"'_2) a” b’ +...... +b" (i)

3!
and this expansion contains (n + 1) terms. Now in particular ifa=land b=x

then the above expansion becomes

no_ nn—1) , nn—-)n-2) 5 " ..

(1+x)" =1+nx+ > o+ o i SRTTT +x (ii)
Thus we observe that when n is a positive integer then the binomial expansion
(a+b)"or (1 +x)" terminates after (n + 1)th term.
7.3.2 Expansion of (1 + x)" where n, the exponent, is a negative integer or a
fraction
If n is a negative integer or a fraction, then the expansion (ii) never ends and thus
in such a case the expansion becomes
mn=l) o nlr= e N s (iii)

2! 3!
When n is a negative integer or a fraction then the series as given in (iii) is
convergent if — l<x<l or Lxl<l and it is divergent if Lx]>1.
Since at this level we will be interested only in those series which are convergent
so we will say that if n is a negative integer or a fraction then the series

(l+x) "= 1+ nx+

(14x)" = 1+nx+ n(’;‘_l)xz-!- "("_2'("_2) e SO is valid only if Ixl<1.
The series of the type 1+ nx + "(';])x2+"("_2f"_2) A is called the

binomial series.
The general term of the binomial series is

o= n(n—1D(n-2)....(n—r+1) o

H=
r rt
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M
Example 13: Find the first four terms in the expansion of (1 + x) ?

R et T
)x+ o o

Solution: (1+x) z2=1+ [_5

2! I 3
1( 3] . 1[ 3)( 5)
; w B 1 =) =i (0 B 2l
- Z\ o /A, 2N 2
1+ 29N . <+ S SRS
(o) 2 6
(1+x)';-1_:.‘.+l§__'_x2_l§£l 3
s 5 g g g X T

Example 14: Find the first four terms in the expansion of (9 + i) i for }xl>g 3
: x

Solution:

Y ) i o)

14
=3|1+= —+ = L] e
2_ Ox 21! Ox 3! Ox
-9
et ULH T AN P 2 (64]
= 3=t e[ A R
9y 2 272 8lx2 6 729x3

_2_2364]

=31+ = 2 + et +]
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Example 15: Compute %/2: to an accuracy of at least four decimal places using
binomial expansion

Solution:

1 1
Given JJ.E.. = (2)3 =(ﬂ}3
4 4 4

1 _1(_3) _1(_2 _2) 1(_21_2 _E)
or (2]3=1+L 3\ 3 i+3 3 3 -—1—4-3 3 3 3 L ........
4 12 2 16 6 64 24 256

1°11,12511 125 88071 ,
12 916 33 3 664 3 3 3 32425
TSl ws
TR T T 4 |

=1 + 0.08333-0.00694 + 0.00096 — 0.000016+.................

Taking only these five terms and neglecting the other we can write
3 % = 1.00000 + 0.08333 — 0.00694 +0.00096 — 0.000016.

Where~ stands for ‘approximately equal to’. We have used here the symbol =
because we have omitted all the terms after the first five terms. So we cannot
expect even think for exactness.

3‘/5 = 1.07719=1.0772

Example 16: Evaluate 35 by Binomial theorem
Solution:
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Vs g IV T TR (gt ) 10 1k B b3
V72 2727271296 2\ 2\ 2/6 46656 2°2727272471679616

el 1 5
B o Bt B s
=6 [1—0.013888—0.00009645-0.000001339]
V35 =6[0.9860149]

J35 = 5.9160852
J35 = 5.9161

Example 17: If x be so small that its square and higher powers may be neglected
then evaluate

1 1

: 4 b 2 (16=5x)

o .__..'.'C;f. (ii) (l‘t_‘lzﬁh.!iﬂz_
=y (9+2x)2

Solution:
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ey =

1 ]
1 1 it 5
=~ (1+x)2(16)2[1——x)
9 +2x)2 92(1 h 2,{)
1 9

1 =
4(1+x)5(1—%x)2 T Ind T e T
= = FU+x)21-ex P 1420 2

1
3(1+-2")’
9

(1
af 1 227! 15 1 2x
= —|l+—x+ Xt I———x+. X = +......
3] 2! 2°16 9
= i I+ — e, [l—ix+ ...................... I——+.eens
3 32
= . RSO LY
3 9 32 32 9
s 1+5] gL 32xed5x Ignoring terms containing 2,00, 8.
3 2 9x32
_4f - 5][ 77x )_ (1- 77x +x] Again ignoring term
3 2 9% 32 9x32 2 containing x2
2 z W 44x—
or (1+x)2(16- 5x) =i4-(1+ 77x) 4f|, 9x16x-TIx =i[1+l x 77.\')
3 2 9x32 3 O%32 3 288

(9+2Jc)2
1 1 :
= (1+x)2(16-5x)2 _ i(”gzﬁ]

N, 3 288
(9+2x)?

7.4  Application of the Binomial Theorem
Approximations: We have seen in the particular cases of the expansion of

(1+x) that the power of x go on increasing in each expansion. Since |x| <1, s0
|x| <|x| for 2,3,4...
This fact shows that terms in each expansion go on decreasing numerically

if |x|<1

Thus some initial terms of the binomial series are enough for determining the
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approximate values of binomial expansions having indices as negative integers or

fractions.
Summation of infinite series: The binomial series are conveniently used for

summation of infinite series. The series (whose sum is required) is compared with
(n-1) o nn~n-2) ,
! 3!
to find out the valu?’s of n and x. Then the sum is calculated by putting the values
of nand x in (1+x)".
20189 2-541 o 258 1

Example 18: Find the sum of the series I+ =
3-2 36 22 369 22

Solution:  Suppose that the given series is identical with the expansion (1+x)".

R P

n
l1+nx+

ooooooooooooo

We have (14+x)" =1+ nx + "("271) x4 "("_l;"f"_z) B4+ ()
S =1 + 2— -1-+-g—---1-+2—5-—8 i-i- ......... (i)
32 362 369 29
Comparing (i) and (ii),we ge t
T 21 — u(n—-])xz=_2_-_5._-l_
32 2! 36 22
Squaring me=l gng MO 3 so that
2! 36
nn=1 , 5§
_._.3.!_.__=£ af..(...r.l..—._u,iu..s.._xg :>£-_1=-r5n=>n;=£
nix? 1 2w 36 1 n 4 n 2
9
= 5n=2n-2 = S5n-2n=-2 = 3n=-2=>n=-§
Putting this value of n in nx = %%

1
We get -gx:—.—:— = —2.t=l=>x=—-;
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Example19: Ify=24+33,3%7 o ... Show that y2+2y — 7=0
: 4 45 4812
Solution: Giventhaty=i+£+£z— .......................
4 48 4812
oy L=l #3030 30 e (1)
4 48 4812

Let the series on the R.H.S. of (1) be identical with the expansion (1 + x)".
We have,

(1+x)" =1+nx+ "(';l) x2+"("_2'("_2)x’+ ................ 2
Comparing right hand sides of (1) and (2), we have,
nx = % .......... (3) and -'—'? x* =§—%...........(4) Squaring equation (3)
n’xl = % ........ (5) Dividing equation (4) by equation (5)
n(n-)x> 35
2 48 nn-Dx* 1 35 16
- or X = — X —
n*x? 9 2 n’x? 4-8 9
16
Lam=D 5 _ n-l_S
2n* 6 n 3
or 3(n-1)=5r=3n3=5n=>-3=5n-3n=>2n=-3
=-3 Puttingn=—~2 innx= > DE ey 23 Sl
=>n= 2Puttmgn 2mnx—4,wegct( z)x S
= 1
x=—0Or X=— —
4 2
e " 3. 35 357
So y+1 =(1+x)" = 1+4+ _8+4.8.12+ ................. becomes

-3 =3
y+1=(1—i)7 or y+l=(HT =(y+1)? =()>
2 2 2
1

5
2

i.e. (y+1)) =8 = yi 42y + 1-8=0=>y*+2y-7=0

2_
or (U=

Mathematics-X1
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1,8
)

EXERCISE 7 3

Filﬂﬂ:nﬁmfmrmmsmﬂnmonsof

@ d -x)T (i) -x)E (iii) (8+12x) $

(i) Find 26 correct to 3 decimal places.

(i) Evaluate ,/(}ﬁ)' to four significant figures.

(iii) Find the cube root of 126 correct to five decimal places.

! 1-x
Expand: "I+x up to x>,

If x is such that x*and higher powei's may be neglected, then show that
1-3x Tx

=p (]

1+4x 2

If x is so small that its square and higher powers can be neglected, then

show that
2

_ @431

2+ 3x)\f 4-5x

If x is large and if —3 may be neglected, then find the approximate value
X

5% xvxl-2x
' (x+1)?

If x* and higher powers are neglected, such that
] 1

(140)%+ (1 —x) * =a—bx?. Finda and b.

Ifx is of such a size that its values are considered up to x>.
1

= 1.._

1 3 3
1+—x)° —(1+3x)2
Show that: i+ Gl L 1557
l—ix 8
6 2
N . o 1+x
Find the co-efficient of x" in [T_]
=¥
Find the sum of the following:
SELENLS L (ii) ik S A BRI o
328 14 8 812 81216
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13.

14.
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Ifyz_LJ,E.l-;-”S A v theny? +2y—1=0

22 21 2% 31 28
SR 1 11035591 ) -
If 2y = 22+-2'!'-24+ 7 26+ ................. thendy*+4y-1=0

If x is so small that x> and higher powers of x can be ignored. Show that
2n+(n+1)x

the nth root of 1 + x is equal to
2n+(n—-1)x

If x is nearly equal to unity then show that px’ - gx? =(p—-q) x N

REVIEW EXERCISE 7

(i)  Whatis the middle term in the expansion of (2x+ 5y)*?
(a) 600 x* (b)120 xy*>  (c) 5000 xy’ (d) 6 X’y

(i1) What is the coefficient of the term containing x12y6 in the

expansion of(x -2y ) ?

(a) 84 (b) —280 (c)560 (d) 448
(iii)  The expansion of (x+ x* —l)s +(x-\[x2_—])5 is a polynomial of
degree
(a) 5 (b) 6 ©)7 (d)8
(iv)  Number of terms in expansion of (\/J_r +\/; )m + (\/; —J; )m is
(a) 6 (b) 11 ()20 (d)5
W (V2#1) + (V2-1) = e
(a) 58 (b) 58v2  (c0)-58 (d)-58+2
i) (n—l)+ [n—-l}i_ +(n—1)_ e
1 5 | = x)
(@ 2"-1 (b 2"° (2" -1 (d)2%
(vii) = Sum of coefficients of last 15 terms in expansion of (l+x)29 is
(2) 2° (b) 2% (C)28 (d)2*
wiii)  "°Cy +C3+ Cs+.-nenneen +18Cy = -
(a) 512 (b) 1024 (c) 2048 (d)1023
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2. Find the middle term in the expansion of (2x + 3y)°
3. What is the coefficient of the fourth term in the expansion of (2x — 4y)"?
4. 2'xy’is aterm in the expansion of (ax + 2y)*. Find a.
2 2310
5. What is the constant term in the expansion of [ +?J
x
6. Find an approximation of (0.99)° using the first three terms of its
expansion,
7. For every positive integer n, prove that 7" —3"is divisible by 4.
8. Prove that (1+x)"2(1+nx), for all natural number n where x>-1
[~ n ,.'-E?
I.' .
.- )
| A
:' 1|2 |1 |
FEENENES
frfafefajal
f1]s | twofw|s]|a1]
1) s ] s afas]e]r]
RN Y E] EIEY KRN |
[1]sfwfs]n|wlaje]:]
[1 ]9 |ss|wjuefuos] aafw]o]]
[ 2| 20] as| ] o] 2s2] 210] 120] 4T 0] 1 | _
fa | nf ss|aes] maf ee| ea] 3] 16s| 5[ n] 1] |
| 1 | 12| o] 220 aos| 292 soa| 702 aos| 220 e8| 12| 1 |
11| n] w]aes| nsfae|ins{ans| wa] ns| 2l | )1
[ 1 | 1] o] ssa] 10m] 200 3003 3432] 2003 2002] 100 ] 3] a [ 202 |
] 1 | 13| 1e8] 453 ] 1365] 3003] s00s] 6435] s435] 5003 3003] 1365 ass [ 05| 5[ 2 |
| 1| 10} ]m|1m|uu[m|mulmnju«qm|4m[mo[m] m| m[ 1
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After reading this un

e

Recall

» function as a rule of correspondence,

» domain, co-domain and range of a function,

« one to one and onto functions.
Know linear, quadratic and square root functions.
Define inverse functions and demonstrate their domain and range with
examples.
Sketch graphs of

. linear functions (e.g. y = ax+b),

« non-linear functions (e.g. y =" ),
Sketch the graph of the functiony = xi’ where n is

= a+ veinteger,

+ a—veinteger(x),

» arational number for x>0. ;
Sketch graph of quadratic function of the form y = ax’+bx+c,ax0),bc
are integers. '
Sketch graph using factors. :

Predict functions from their graphs (use the factor form to predict the equation.
of a function of the type f (x) = & + bx + c , if two points where the graph
crosses x-axis and third point on the curve, are given).

Find the intersecting point graphically when intersection occurs between

» a linear function and coordinate axes,

» two linear functions,

» alinear and a quadratic function.

Solve, graphically, appropriate problems from daily life.

1. the students will be able 1o

i B =




Unit 8 I Fanctions and Graphs

8.1. Introduction

In many practical situations the value of one quantity depends on the
value of another quantity. Such dependence of one quantity on another is
described mathematically as function. For example, one of the indicators on the
dashboard of a car shows that the amount of petrol in gallons in the tank is
decreasing and another indicator shows that the distance travelled in kilometers is
increasing. In this example, we observe that there are two variable quantities and
there is a relation between them. The variable quantities are the number of gallons
of petrol in the tank and the number of kilometers travelied. Thus, the distance
travelled in kilometers is the function of numbers of gallon of petrol in the tank.
As another example, the temperature of air(Remember T
throughout the day depends on the instant of time, g '
80 we can say that temperature of air is a function A
of instant of time. In general, if a variable denoted &
by y (say) is associated in a definite way with a [pu
variable x, then y is said to be a function of x.

To be more specific,If the values of y depend on [y
X in such a way that each value of x determines '
exactly one and only one value of y, then y is a
function of x”.

Symbolically, we write  y= f(x). (1) v

Which reads as*y is a function of x or simply y is equal to f of x”. In equation (1)
the variable x is called the independent variable (or argument) whereas y is
called the dependent variable.

8.1.1 Function as a rule or correspondence
In this section, we give formal definition of a function.
A function from a set X to a set Y is a rule or correspondence that assigns to each
element x in X a unique element y in ¥. Symbolically, we write it as - X>Y and
read as “fis a function from X to Y”'.

The elements of X are called pre-images and the corresponding elements
of Y are called the images. If ye¥is an image of xe X under the functions f, we
write it as y = f(x). Equivalently, we say that y is the value of the function f at X,

see (Figure 8.1). i

Figure (8.1)
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Hlustration: The following is a function, which relates the time of day to the
temperature.

Time of day (P.M.) Temperature (in °C)
Figure (8.2)

Examplel: Let X=(a,b,c}and y¥={1,2,3}. State whether or not the rules indicated by
the following figures are functions from X toY.

Solution:
(1 The figure (a) does not define a function, because the element ¢ of
the set X has not been assigned any element of Y.
(2) The figure (b) does not define a function, because the element b of

" X has been assigned two elements of Y.

(3) The figure (c) does define a function, because every element of
X has been assigned a unique element of Y. It may be noted that
definition of function does not require that each element of Y
should be an image of some element of X.

Example 2: Evaluating a function
Let g(x)=—x"+4x+l.
Find each function value. 2.g(2) b.g(f) ¢ 8 (x+2)

Sclution:
a. Replacing x with 2 in g (x) = -x? +4x+1 yields the following.
g(2)=—(2) +4(2)+1=—4 +8 +1=5
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b. Replacing x with t yields the following.
g(t)=—(t) +4(e)+1=~* +4+1

For You Infomulinn
*Al!hcugh ﬁls oﬁen used as a

C. Replacing x with x +2 ylelds the following. }convcnlent funmon name andi

g(x+2)=—(x+2)2+4(x+2)+1 \xis often’ used1as the =)

o ﬁdemndentuvmwle other 1
-(x'+4x+4)+4x+8+1 letterc camalscﬁheused For °

‘example, £ (x) —x2—7x +12,
, f@ =t2~—7t.+'12 &n :
=—x"+5 2(s) =5 275 + a]lde.ﬁne |

8.1.2 Domain and Range of a Function (the g same function. radd
Let f:X — Ybe a function from a set X to a set Y, Then set X is cal]ed domam and
the set ¥ is called codomain of the function £, The set of all those elements of Y
which f is assuming is called range of the function f.

If the domain is not specified,then it is assumed to be the set of all real numbers.

If f is a function of X into ¥, the range is a subset of ¥ but need not be all of ¥, This
has been shown in (Figure 8 4).

=—x"~4x~4+4x+8+1

rlﬁmﬁmﬁﬂnfﬁﬁhu Naniof e
i}’ f(x)'fns.ﬂ]enmueuﬁthe 4
fumttom o
yisthe ﬂ‘bipmuhnf‘ VALBBIGE 1
*xls the ttfd}:ﬂlfuutm ihn{ﬁlﬂ& -

yls the value af a‘h.1 ﬁmctwn*atxl

Domain Figure (8.4) Range c codomain

8.1.3 One-to-one and onto Function

(a) A function f:X — Yis said to be one-to-one (or imjective) if distinct
elements of X have distinct i images in Y i.e. if x; and x; are distinct elements of X
then f(x)# f(x,)in Y. Equivalently, if f(x)= f(x,), then X =x,.

Sometimes we write 1-1 function for one -to-one function.

(b} A function f:X — v is said to be onto (or surjective) if each element
of Y is the image of some element in X i.e. the range of f is the whole set Y.

?'Jlaq?hmnniiu&’L{[ 33d
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A function f which is both one — to — one and onto is called bijective function.
Consider the functions f and g as shown in [ Figure (8.5) (i) and (ii)].

S g
P T U 4

(i)

Figure (8.5)

Figure (i) represents a function f which is one —to — one but not onto (why?)
Figure (ii) represents a function g which is onto but not one-to-one {why?)
Example 3: Show that the function f: [R— IR defined by f(x)=3—5x is both
one-to-one and onto i.e. bijective.
Solution: For any two elements x, and x,of X, we have

f(x)=3-5x and f(x)=3-5x,
If f(x)=f(x,).then3-5x =3-5x, = x =x,.
Thus f is one-to-one.
Now the range of f(x)=3—5xis the whole set IR so it is onto.
Hence fis both one-to-one and onto i.e bijective.
Example 4:  Show that the function g : IR— Rdefined by g(x) =2x" +1is
neither one-to-one nor onto.

Solution: The function g(x) =2x"+1is not one-to-one, because
g(=2)=2(-2)*+1=9=2(2)* +1=g(2), that is — 2 and 2 both have the same
image 9.

Now the range of & (x) = 2x” +1is the set of real numbers greater than or equal to
1, that is, Range g=[1,=)# IR, so g is not onto function. Thus g is neither

one-to-one nor onto.

8.1.4 Linear, Quadratic and Square Root Functions
We begin with the definition of:

(a) Linear Functions
A function fis a linear function if it can be written as f{x) = mx + b,
where m and b are constants.
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(If m =0, the function is a constant function f(x) = b, if m =1 and b= 0, the
function is the identity function f(x) = x)
For example,

f(x)=x+1,g(x)==3x+4,h(x)=3x~8 are linear functions.
The domain of a linear function is the set of all real numbers.

{b) Quadratic Functions
A guadratic function f is a function that can be written in the form
f(x)=ax’ + bx + ¢, a#0, where a, b and c are real numbers.
For example, f(x)=3x*+4x+1,and g(x)=5x" —x-7 are quadratic functions.
The domain of guadratic function is the set of all real numbers. '

(c) Square Root Function
A function of the form £(x)=/x where x20, is called a square root function.

The domain of square root function is the set of all non-negative real numbers.

8.2 Inverse Function
Let f:X — Y be aone-
to-one and onto function.
Then for each element in @
the domain of f, there is a :
unique element in the TN
range of f and for each

element in the range of f,

there is a unique element

in the domain of £, In this case the correspondence f~':¥ — X is also a function,

which is called an inverse function of f. Thus the inverse function f Tof fis
defined by

x=f'(y)VyeVYifandonlyif y= f(x),Vxe X

Domain of /

S (x)

Figure (8.7)
It is evident that (f~')'=f. Thus fand f~'are inverses of each other.
The above figure illustrates the concept of inverse function.

Range of /~/ Domain of //

'h'lathculmif'sw\’l 230
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8.2.1 Domain and Range of Inverse Functions
It is clear from the definition of inverse function

f~'that domain f~* = range f and range ' = domain f
Example 5: If f:X - Y is given by

. f =1
X f
9
5,
> 3
e
\* 5
Figure (8.8) Figure (8.9) .
Find f'.
Solution: Since f is both one-to-one and onto, so it’s inverse exists, shown

in the (Figure 8.9). We note that f~' is also bijective.

Algebraic method for finding the inverse of a function

If the function f is given by a simple formula, then the inverse function f “I'can
be found by an algebraic method which involves the following steps.

Step-1 Write y= f(x) :

Step-II Solve the equation in step-I for x in terms of y.

Step.-III In the resulting equation in step-II, replace x by f HE9).

Step-IV Replace each y in the result of step-IIl by x to get f™'(x)

Step-V Check the answer by verifying that f7'(f(x) }==x.

Y

Example 6: Let f = IR —IR be the function » y=fix)=2x -l
y=x
defined by f(x)=2x-1, find f'(x). -
Solution: We have f(x)=2x-1 e [y =0 =:%I
Step-1  Write flxy=2x-1=y A ; -
Step-Il Then  2x-l=y ]
y+1 / T .
= 2x=y+l= x=5— - Figure (8.10)
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Step-IIL Replace x by f~'(y)so that

a2t
= 5

Step-IV. To find f'(x), replace y by x, we have

Step-V.  Verification: /' (f(x)) =f"@2x-1) =

(%]

6

I f(x)=7x -2, g(x)=

x+1

f“’(x)=—2

2x-1+1 2x

— ==X,
2 2

EXERCISE 8.1
flx)=x"+x-1,
\1) Find the images —2,0,2,5 i If f(x)=5,then find the values of x
(i11) Find f(x+1) an and.._f({f"h:"f(x)

2x
x’-4’

determine | |- £(6), g(=1), h(4), k [%) iy (w::f&)

A(x)=425— x? , k(x)=x2+1, then

Find all real values of x such that f(x)=0.
(i} f(x)=15x-3 ; (1 F)=x"-8x+15
(il fe=x*—x 0 f@=x-x*-5x+5

Find the dom_zﬁn and range of the function f(x).
0 f(@)=5x+2x-1 f(x)=x"-16

Find the inverse function of the following functions

() f9=2e-3 () fe=tacs 1 f)=22 fw=sria

If f(x)=x>-2, find 0 () o T3

Iff(x):ii}g-

Find (i) Domain and range of f. ‘i) Domain and range of f'
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8.3  Graphica! Representation of Functions
This section is devoted to the representation of functions by graph. The
graph of a function is a pictorial representation of function that is obtained by
using the xy-plane.
Let fbe a function defined by y = f(x). The set of all points (x, y) such that
xis in the domain of f is called the graph of f and we say that the point (x,y)is |
on the graph of £.To be more specific, if G denotes the graph of 7, then |
G ={(x,y): y = f(x) where xis in the domain of /} |
Equivalently, the graph of f is the graph of the equation y= f(x).
The graph of a function may be obtained by constructing a table of corresponding
values xof f. Each of these points may be plotted by placing a dot at appropriate
location in the xy- plane. Then joining them together by means of a smooth curve

gives the required graph of the function.
8.3.1(a) Graphs of Linear Functions
We sketch the graph of linear functions of the form y = ax+b where a,b € IR anda=0.

Example 7: Sketch the graph of the function

f()y=2x+1, xe{0,1,2,3,4} 9

Solution; For graph of this function, we assign )

5

yalues to x from its domain and find the ‘3!

corresponding values of y in the range of f 2
as shown in the table: ] AR i e

y= f(x)=2x+1

Figure 8.11

joining them with curve, we get graph of the given

.It is clear fromathe above

: : . |
function as shown in the (Figure 8.11). |
Example 8: Draw the graph of the function figure, that the graph of a r
y= f(x) - 2x+1,x€ m. i]-um fl.ll‘lctlomls a‘smght E

_.“-.--1.— A w---___.-_

Solution:  The domain of the function is the set
of all real numbers IR. For the graph of y= f(x) =2x+1, we assign some values to

x from its domain and find corresponding values y in the range of f as shown in

the table:
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y=f(x)=2x+1 ¥

The graph of the function is shown in figure (8.12).
As x can be any real number, the line is infinite in
both the directions representing all the real numbers BRE T
in the line. The domain and range of linear function
are the set of all real numbers. i

- b da A DN ) 06D

(b) Graph of Non-linear functions
In this section, we will sketch the graph of
non-linear functions, that is functions of the form

f)=x* f(x)=x"and so on.

Example 9: Sketch the graph of the function
y = () =17

-3.9)

Solation: In the following table some of the
corresponding values of x and y are given
y=fx=x"

: # B Figure 8.13

: B o BN BN _
The graph of the function f(x)=x* is shown in figure (8.13).The function f(x)=x*
is called a squaring function. The graph of squaring function is called a parabola.

Its domain is the set of all real numbers and its range is the set of non-negative
real numbers.




Example 10: Let f(x)=x’. Sketch the graph of f. y
Solution; We construct a table of values for
f(x)=x as follows:

y=x

—27 -1 1 27

Plotting the corresponding points and
joining them by a smooth curve, we
obtain the graph of the function in figure
(8.14). The function f(x) = x’is called a

cubing function.
The domain and range of the cubing function are the set of all real numbers.

Example 11: Sketch the graph of the function f (x) =V .
Solution: The given function fis a square root function. The following table gives
some values of y corresponding to values of x. y

y=fx)=Jx

The graph the function is shown in :

figure 8.15. : el

8.3.2 Graph of the function of the form y=x"
Sometimes we group together different

functions and write them in a single form while Figure 8.15

observing .the definition and properties of the | LA

functions. For example, consider the power

function y = x™ where m is any constant.

Now, if

(a) m=n i.e. a positive integer, we have another function of the form y =x

n

(b) m=—n i.e. a negative integer, we have another function of the form

- 1
y=x“=;;;¢0

(c) m= 1 i.e. a rational number, we have yet another function of the form
n i

1
y=x"x>0
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We see that all these functions are represented by a single function of the form
y=x" 1)

where n is any constant. The single function in (1) representing different functions

is called a family of function.

In this section, we will sketch the graph of the family of functions y = x". The

power function can also have fractional and irrational exponents. However, the

discussion of such power functions is beyond the scope of this book.
)r
&

{a) Graph of v = x" where n is a positive integer
Clearly the dorain of y=x" is the set of real numbers. il
(1) When n=1,we have y=x. The following 4 ¢
table gives the values of the function y= f(x)==x /1 R
YA ) s
-2-2)
(-3-3)
- - Figure 8.16
The graph is shown in figure (8.16) which is v
a straight line passing through the origin. T p=x
-39 {3.9)
(2) Whenn =2, we have y=x*. The graph of _
the squaring function y = x” was sketched (24 @4
in example 9 which is reproduced in 1l | Jon :
— o0 =
f’igure(&l?). The graphof y=x Figure 8.17
is a parabola. y
VTl
(3) When »n=3, we have y=x" which is called (28)
cubing function. The following table gives
some values of the cubing function y = x*. (1) Y
LT @0 i
Figure 8.18
The graph of the function is shown in figure (8.18) 28
@) When n=4, we have y=x', S
The following table gives some values of the function m’”l'n ."[ N
y=x' Wl
— S EEE == i

W i DEEE o WM o ML

The grph is shown in figure (8.19) Figure 8.19




(5) When n=5,we have y=.x’.The following table M
gives some values of the function y =’

The graph of the function is shown in figure (8.20)
Remember that

) When the values of nare even, the function ww | Figure (8.20)
f(x)=x"are even functions and the graphs of the function f(x)=x"are
symmetric about the y — axis. In this case, all the graphs have the same
general shape as the parabola y=x?

{ii) When the values of nare odd, the functions f(x)=x" are odd functions
and the graphs of the function f(x)=x"are symmetric about the origin.
In this case, all the graphs have the same general shape as y = x’ for
odd n greater than 1.

(iii) By increasing nthe graphs in both cases become flatter over the
interval —1< x <1and steeper over the interval x>1 and x <-1as shown

in figure(8.21) and figure (8.22).

T
i 1
ne
.-‘ LX) f.-_,;_r -4 _
3 et
\\ i C IS -;.
N AT .
SR |
/#_3
II.I-\I= ‘. } a | ’ | -
wWhin il 15 e\ Fi
igure 8.21
Figure 8.22

(b) Graph of y=x"where n isa nei'gative integer

The domain of the function y =L" is the set of all real numbers except x #0.
X

(1) when n=-]we have y .1 . Some of the values of the function are
X

given in the following table.
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Figure 8.23

The graph of the function is shown in figure (8.23)
(2) . "When n=-2,wehavey =L, . In the following table some of the values
2

of the function are given. y

o]
V5T

M

4 U
it X =
|
.

Figure 8.24

Figure (8.24) represents graph of the function.
(3)  When n=-3, we have y=—=- The following tables gives some values
X

of the function.

Figure (8.25) shows the graph of the function. \ Figure 8.25




4) When n=-4, we have y =L4 . The following
X 4
table gives some values of the function. Ifk Ay
l .rfl
y== /|'
SN
The graph of the function is shown in figure (8.26) <
Remember that
(i)  When the values of n are even, the functions f(x)=.1; are even, and
X

their graphs are symmetric about y - axis. In this case, all the graphs

have the same general shape as y= '15.‘ .
X

(i)  When the values of n are odd, the functions f(x '“!;. are odd, and
X
their graphs are symmetric about the origin. In this case, all the graphs
have the same general shape as y ke
X
(ii) By increasing n, the graphs in both cases become steeper over the
intervals —1<x<0and 0<x <1, and flatter over the intervals x>1and
x<—Ias shown in fignre (8.27) and figore (8 28) respectively.
¥ ¥y
1 il a
11 falievm — Jatpy= L
"! N jl'j 1
1 J— )= T x
“ 2”—} - L,- "1‘-“:’" _.Ir"
| 0| L
{-1;’!' 1.1““ +1 :Qu
= a £ IR RN £ ) 3
:; 24
.
-4 A1
Figure 827 Figuoe 828
(c) Graph of y =x"(x >0) when n is a Rational Number

Generally the domain of the function y=*.r7l" is the set of all real numbers.

Mathematics-X1
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1
However, at present we will consider y=x7 with x>0.

(1) When n=1,we havey= f(x)=x which is the identity function. Itis a

special linear function. Its domain and range are the set of all real numbers

in general. Some of the values of the function are | ;;L,r Vigﬂ# fqﬂ
£ias i Ernseidalithatat
given in the following table. 3 T fﬁr $ielaiipssis
P S
HETE
Figure 8.29

The graph of the function is shown in figure (8.29) which is a straight line,
) Whenn=2, we obtain y= = Jx that is , the square root function. The

following table gives .the values of the function y =+x

b {-get -]

rTeE

The graph of the function is shown in figure(8.30) Figure 8.30

3 When n=3, we have y= ;r;' =Jx . Some of the values of the function are

1

given in the following table. 1H

y=x

WA

The graph of the function is shown in figure{(831). Figure 8.31
(4) When x=4, we have y==x" =4 The values ofthe function are given
in the following table ,




? ; i ; . IJL |
: ] T
o 2ides
- ) 13
LR
W T %
-E e e
The graph is given in figure(8.32). } _,_i H
Remember that g Figure 8.32
(i) When the values of n are even, the graphs of the function y #x: have
the same general shape as the square root function y= Jx
(ii) When the values of n are odd, the graphs of the functions y =x" have
the same general shapes as y=x" =¥x. |
(iti)  The graph of y= x” extends over the entire x-axis, because fo=x
is defined for all real values of x. The reason is that every real number
has a cube root,
' ;
(iv) The graphof y= x' only extends over the non-negative x - axis . The

reason is that negative numbers have imaginary roots.

v ' ¥

FS
+4
-3
t
k2 J'_’r_
T e
" b —t 3 ¥
4 -3 2 49 1 2 3 4
14
24 -
-3 R
.l Figure 8.34

8.3.3 The Graph of Quadratic Functions

In this section we want to look at the graph of a quadratic function. The most
general form of a quadratic function is, fx)=ax*+bx+c

The graphs of quadratic functions are called parabolas.

Here are some examples of parabolas '
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The lowest or highest point of a parabola is called 3

its vertex. The vertical line passing through the \
vertex of a parabola is called the axis of symmetry \__/
or more briefly axis of the parabola. ?

In figure (8.35), the dashed line passing through the //F-—-*"VE"“
lowest or highest point i.e. vertex of the parabola is r 7T N 1
the axis of symmetry, ¢ :
The Graph of a General Quadratic Function / [TreHiE
Let f(x)=ax’+br+c,a0be an arbitrary quadratic / \
function. In order to sketch graph, we complete \ '
the square in f(x) = ax® +bx+c as follows: Figure 8.35

f (%) =ax’ +by+c

=(ax’ +bx) +c . (Separating c)

. b
=a(x"+—x)+c (Taking a as common)
a

4 Ll

, b b
=a(x” +—x+—=)+c—a(—) (Adding and subtracting the square
a da° da- of hall of the co - aHicient of ).

"

b, ¥
=alx+—) +{c——
( 2a) ( 4(:)

f(x):a(x+i) + c—-b—-— ,a#z0 (1) To simplify (1), we let
2a 4a
-b b
h=— and k=¢c~— (2) Then (1) becomes,
2a 4a
f)=a(x—h +k (3)

The graph of f is a Parabola with vertex at the point (4,k)

The parabola opens upward if a >0 and downwards if ¢<0

The axis is the vertical line x= . With the help of formula (3), we can draw a
reasonably accurate graph of the quadratic function in x by plotting the vertex
and at least two points in each side of it.
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Example 12: Sketch the graphs of the quadratic >

functions f and g defined by cnik frs

@ fw=+ () g=-r \ /

Solution:(a) The graph of the quadratic function \ /

flxy=x with a=1, b=0, c=0was sketched in t “'”*-1 1 f"-"

Example 9 and is reproduced in figure (8.36). g
Figure 8.36

The vertex of the graph is the lowest point (0,0).

(b) In the following table some of the values of x and corresponding values of
y of the quadratic equation y = g(x)=-x’ with a=1, b =0, c =0are given:
y=g=—= [ 5 i y
00)
—4 0 4 P, U x
The graph of the function is shown in figure (8.37) (-1'.1}; I N
The graph of f(x)=x’ opens upward and the _|
graph of y=g(x)=—x" opens downward. (-2.4) 4 * 12-4)
In general if, f(x)=ax’,a#0, then the graph of f(x) Figure 8.37
opens upward if o >0and opens downward ifa<0 .
Example 13: Sketch the graph of the function ¥
f=xt=2x+1 A o
Solution: We construct a table of values of the o /
function as follows: y=x?—2x+1 anele f'f‘"“
. . ! -.:}‘-4 ;"{ e
Figure 8.38

The graph of the function is shown in figure (8.38) with vertex at (1,0)
Example 14:Without graphing, find the vertex and axis of the graph of the function

fx)=
Solution: Here a=-1, b=4, c=-5.
2
- vertex of the graph of f =(hk)= 5 C_Iz;) :
S =R OE_GF),
2(-1) A(-1)
. b
Axis = x=———=2
2a

Sincea =-1<0, so the graph opens downward.

~x2+4x=5. Also determine whether the graph opens upward or downward.
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Example 15: Sketch the graph of the function f(x)=x*-2x-2.
Solution: Here a=1, b=-2, c=-2.

b b? -2 (—2)
vertex of the graph of ———-, c-— -2 -~ =(1,-3
graph of f =( > )= (2{1} 4(1))( )
Axis =x=——b-=1 (
2a Fy

Since a =1> 0, so the graph opens upward.

The two additional values on each side of the \ |
vertex are given in following table. aid 1 >
y=x"'-2x-2 W1 /

[T

The graph of the functlon is given in figure (8.39). Figure 8.39

EXERCISE'8.2 | | |
l. Sketch the graph of the given funcﬁo}l- ’

() f()=2x+3 (1) f(x)=dx=5
2. Sketch the graphs of the following functions
(i) () =x2+1 G f@=—2"+1 (i) f=x+2x+]

4 Without graphing, find the vertex, all intercepts if any and axis of the
graph of the following function. Also determine whether the graphs ope
upward or downward

(1} f(.t)=—;x .(ii) f(x)=-2x*+8

(i) @)= —x” +6x-5 (iv) Fl=x"+2x-3

4. Match the quadratic function with its graph. [The graphs are labeled (a),
(b),(c). (d), (&), and (f).]
L@ == i f ()= i f ()i=x=2
iv. ) =(x+D)P -2 v f () =4-(x=2)" vi f(x) =—(x—4)°




(4, 0)
-i[» 2/4%6 8 ; 6 /
-2-!' \L )%

8.3.4 Using Factors to Sketch Graphs
In the above section we sketched the graphs of quadratic functions by
plotting many points. In this section too, we will sketch the graphs of quadratic

functions but using their factors.
We know from our previous class knowledge that a quadratic expression can be

written as a product of factors. For example, we can write

X 43x+2=(x+1) (x+2)
where (x+1) and (x+2) are the factors of the quadratic expression X43x+2.
Similarly, some quadratic functions of the form f{x) =ax’ +bx+c(a+#0) can be

factored and their graphs can be drawn by using the factors. This method of using
factors to sketch the graph of quadratic function is explained through the following

examples.
Example 16: Sketch the graph of the function f(x) =x"+2x-3.
Solution:  Wehave f(x)=2x"+2x-3=(x+3)x-1).
To find the points which lie on the graph of the functionf (x) ,
we put (x+3)(x—1)=0. The equation is satisfied ifx=—3 or x=1.
Now f(-3)=0 and f(1)=0. Thus the points lying on the graph of f(x) are
(-3,0) and (1,0) that is, the graph cuts the x—axis at (-3,0) and (1,0) .
To find the point where the graph cuts the y —axis we .
put x=_01in the function so that f(0) =—3. Therefore ~
the required points is (0,—3). All that remains to be done

is to obtain few additional points on the graphs in order
to sketch it. Some of these are given in the table below.

y=(x+3) (x-1)

5 s B - [E
The graph of the function is shown in figure (8.40),
which opens upward, since a=1>0.

¥ = (x+3)x-1)

4
=3
2
1

Figure 8.40
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Example 17: Sketch the graph of the function
FO=—ax"+12x .

Solution: We have f(x)=—4x" +12x=—4x(x—3)

To find the points where the graph cuts the x-axis,

we put—4x(x—3)=0. On solving we get

x=0or x=3.

S f(@)=0and f(3)=0

Thus the graph cuts x ~ axis at the points (0,0) and
(3,0). Also f(0)=0, so the point where the graph

cuts y—axis is (0,0).

To draw the graph, we need some additional points,

which are given in the table below:

y=-4x (x-3)

v

Figure 8.41

The graph of the function is given in figure (8.41) which opens downward, since

a=-4<{.

{I Remember L

W

We ma)r draw the graph of. a‘?y quadrauc functibn f (x) which can be factorized as
)’ = f(x)=alx—p)(x- ‘g%lby keepmg the following points in mind..

; ) Nole the %(\ts {p.0) and (g,0) where the graph oftﬁefunctlon'c{ns the x-axts

l (i) By takm-g‘x- 0 in the function f{x).nmme point (0, ¥) where the graph cuts the

ya.xts .

(iii) Th?sngn ofithe constant a tells whether the graph opess upwards or downwards. !
(w)tt,To draw the graph obtaln some additional points on the graph.
' (v) The shape of graphs of all. quadratlc functlcms isa pmabola

8.3.5 Predicting Functions from their Graphs

In this section, we are concerned with the use of factor form to predict the equation
of a function of the typef(x)=ax®+bx+c, (a=0) if two points where the graph
cuts the x —axis and third point on the curve are given.

The method employed in doing so is explained through the following example.
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Example 18: Find the equation of the graph of the function of the type
y=ax’ +hx+c. (a=0)which cuts the x —ais at the point (-2,0) and (2,0)and also

passes through the point (1,-6).
Solution:  The equation of the curve which passes through x —avis at the points

(p,0) and (q,0) has the form y =a(x —p)(x -q) (1)
The curve which passes through the points (-2,0) and
(2,0)is shown in figure (8.42). {
Here p=-2, g =2,s50by (1), we have

y=alx+2)(x-2) )] \ | /
The point (1,-6) lies on the curve, so it must satisfy G
equation (2) and s0 -6=a(1+2) (1-2)

= -6=-3a= a=2

i

Therefore equation (2) of the curve becomes Figure 8.42
y=2(x+2)(x—2) or y =2 x> -8, which is the required equation.

Example 19: Find the equation in the form x*+bx+c=0 of the parabola which
crosses the x-axisat the point (-5,0)and (3,0

Solution: The torm of the parabola is given by

L +bx+e=0 (1)
The general form of the parabola is given by

ax* +bx+c=0 (2)
Comparing (1) and (2), we have

a=1>0

so the parabola opens upward. The equation of the curve which cuts the x—axis at
the points (p,e)and (g,0)has the form
y=a(x—p)x-q) (3)
but a =1,s0 (3) becomes
y={(x-p)x-q) “@
The curve which cuts the x—avxis at the points t
(-5,00and (3,0)is shown in figure (8.43).
We have p=-5and ¢=3 \ g /
{-5.0) 10; b

Using (4), we obtain =
y={x+5)(r=3)
ory=x’+2x—15

which is the required equation.

-] Figure 8.43
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8.4 Intersecting Graphs

In this section we aim at to find the intersecting points graphically,when
the intersection occurs between a linear function and coordinate axis, two linear
functions and a linear and quadratic function. we will also solve graphically
appropriate problems from daily life.

(a) Point of intersection of a linear function and coordinate axes
C

If a line ! intersects the x-axis at a point (a,0), the R"*

number a is called the x- infercept of the line [. if a line { 0.5

intersects the y-axis at a point) (0,b) the number b is (3

called the y-infercept of the line [. see (figure 8.44).

Since the graph of a linear function f(x)= ax+b, 3

a,be IR is a straight line, so it will intersect the x-axis at

the point (a,0),and y-axis at (0,b) thus, the points where

a graph of a linear function intersects the coordinate axes

are the x- intercept and y-intercept of the graph. Figure 8.44
Example 20: Find the points of intersection of the linear function f(x)=x-4 with
coordinate axes v

Solution: By giving some values to x, we find the
corresponding values of y in the following table.

F)=y=x—4

The graph of the function is shown in (figure 8.45).
The graph intersects x-axis at x=4 and y-axis at
y=-4. The answer may be easily verified by finding
the x- intercept and y-intercept of the graph.
(b) Point'ef Intersection of two linear functions
We draw the graph of two linear functions on the same graph paper and then
determine where the two graphs of these two linear functions intersect by looking
at the graph.

Example 21: Find the point of intersection of the functions f(x)=x+3and
g(x)=-2x+9.
Solution: For f(x)=x+3, we have the following table of values: y=x+3

Figure 8.45
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find that the point of intersection is (2,5) { i J ] [-*.-5, i -Drr_f
Although this seems to be a very simple method of -y Fizanaums, H
finding the coordinates of the point of intersection | EERmeEnnaaENERRYEQHTSSs; 4 ]
of two linear functions, it may not always be very [} IXE EEESNER
accurate in cases when the coordinates of the point AT a8 i i _____ jr__
are fractional numbers. In that case, to find where T ¢ T =
exactly the graphs cross, we must use algebraic = _T‘ HH ':j;
rather than graphic method. We can find a value of 7 Styas EEREE aERERE
x and value of y that satisfy both the equations of _"'}m” e rfﬁ
i R T3

linear functions simultaneously. For this purpose am -
several methods are available. For example, we Figure 8.46
may use the methog of elimination or method of substitution with whom we are
already familiar.
(c) Point of intersection of a linear function and a quadratic function

The method for finding the point of intersection of graphs of a linear function
and a quadratic function is the same as that for finding the point of intersection of
two graphs of linear functions. The method will be clarified by the followmg

example. eessaus: : ¥
. Example 22: Find the point of intersection of the | AR ] R
functions f(x)=x-4x+6and g(x)=2x+1 14 i
Solution: The following table gives the values of [ gEERS ESEda
the function y=f(x)=x>—4x+6 E?f“—‘ = : Eaeer ) y
y=x2—4x+6 Hines AT 5e
— —n g o i GE
TIK { -ﬁ AT ]
it o LA -
T EasaEs
The table for values of the function g(x)=2x+1 is [+ A r o
glve below: y= g(x) 2x+1 Figure 8.47

The graphs of these two functions are shown in figure (8.47).
The points of intersection of the two graphs are (1,3) and (5,11).
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8.4.2 Graphical Solutions of Problems from Daily Life
Many problems from daily life can be sclved by means of graphs. Here are
some examples.
Example 23: 1t takes a swimmer 2 min to swim 24m downstream in a river and
4 min to swim back. Find the speed of flow of water and the speed at which he can
swim in still water.
Solution: Let x = speed of swimmer in still water and y = speed of flow of water
Therefore speed downstream = x+y and speed upstream =x—y
We know that time x speed = distance
2(x+y)=24
4{x=y)=24
or x+y=12
x—y=60
or y=-x+12 (1)
y=x+6 (2)
we see that equations (1) and (2) are the equations of linear functions and they are
represented graphically by straight lines. We find the point of intersection of their

graphs. e
The values of functions (1) and (2) are given in the || } ;_-_ : LECES
following tables: y =x +12 b i
T ! l - Ry - -‘- : . 4:._ £ e :
a1+ O 2 N ot o RSN 2| |
andy =x +16 : : H ﬁ

-2l 2 B gates
The graphs of both functions are shown is 1= (bt iplH
(figure 8.48). I"lgurc 8 48
We find that their point of intersection is (3,9), thatisx=3and y =9
Thus the speed of swimmer in still water =x=3m/min and the speed of flow of

water = y =9m/min. Use algebraic methods to verify the answer.

Example 24: A group of 45 school children visited a zoo and paid Rs.60.00
altogether as entry ticket. The entry ticket of class | was Rs.2.00 per child where
as that of class KG Rs. .00 per child. Find how many children were in the group
from each class.
Solution: Let x =the number of children from class |

and y =the number of children from Class KG.
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According to the condition of the question, we have |

x+y=45
2x+y=60
or y=45-x (1
y=60-2x (2).

Equation (1) and (2) represent the equation of lmear HEHH
functions whose graph are straight line. We find '

that point of intersection of their graphs. The values | T

of the functions (1) and (2) are given in the H
following tables.

y=45-x

R ’0 0 20 [E 10 [ o0

Flgure 8. 49

The oraphsof both functlons are shown in ﬁgure(S 49). The point of intersection
of the graphs is (15,30), that is x=15and y = 30.

Thus the number of children from class I=x=15
and the number of children from ¢lass KG. = y =30.

1. Sketch graphs of the following functions

M fx)=(x-1)(x=3) (i) f)=-2(x+1{x-1
2. Using factors to sketch the graphs of the following functions
(i) Sf&x)=x*-2c-3 () f@=—=*-x-2)

3. Find the equation of the graph of the function of the type y=x Zibx+c
which crosses the x—axis at the point (3,0) and (4,0).

4. Find the equation of the graph of the function of the type y =ax® +bx+c
which (i)cross the x—axis at the point (-5,0) and (3,0) and also passes
through (-1,8)

(ii) cross the x—axis at the point (-7,0) and (10,0) and also passes through
(4,11).

5. Find the point of intersection graphically of the following linear functions

with the coordinate axes. (i) flx)=x-3 (ii) f(x)=2x+1
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il
Find the point of intersection graphically of the following functions.

) FlO)=—x+2, 2(x) =2x+1

(ii) f(x)=3x-2, g(x)=-x+6

Find the point of intersection graphically of the following functions.
(i)  f)=—x"+4, glx)=x+2

(ii) fly=x2+x-3, glx)=-2x-5

The paths of two airplanes A and B in the plane are determined by the
straight lines 2x~y=6 and 3x+ y =4 respectively. Find the point where the
two paths cross each other.

A pilot makes a check flight in an air. Going directly into the wind, he
covers a distance of 24 km in 6 minutes. Going with the wind, he covers
the distance in 4 minutes. Find his air speed and velocity of the wind in
km/min.

_ REVIEW EXERCISE 8|

. Choose the correct option.

i, What s the domain of f(x) = ,P"" 7
' xX+2

(@ 4-2) (b [0,2]- {1} © (=2,2) () (=22]

ii. A={-1,0,1,2},B= {0, 1,4} and f: A — B defined by f{xx) = x°,

then f is
" (a) Only one-one function () Only onto function
(c) bijective (d) not a function

iii. Iff: R — R defined by f(x) = 3x — 5, then f"({ =1, =2.1,2}) =
' 4 7 4 4 7]

11 =Ty = —1,2, e ;12’ et 1, 21_11—2

(a){ ; 3} (b) { 3} (c){ 33 @Of }

iv.  Iff(2x+ 3)=4x> +12x + 15, then find the value of f(3x+2) is
(a) 9x°—12x +36 (b) 9x% +12x +10
(c)9FX—12x 424 (d)9x*—12x—35

V. If f(x) = x° —-% Jthen f(x) + f(—l- )=
X X

(a) O ) —1 ()%  (d)None of these
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vi. If f(x) = x*=3x + 4, then find the values of x satisfying the equation
f(x) = f(2x+1)
(2) 53 (b) 2/3 (c) 1 (d) None of these

The domain of y = ==
g Vxi-3x+2 &

(viil) Guess the quadratic function for the curve given in the figure.
1¢
1

vii.

(a) g(x)=x*-2x-5

(b)  g(x)y=x*+2x+5
€} gx)= —x2-2x+5 /-\ X
(d) glx)y= —x*+2x+5 ; \

2. Find domain of f(x) = ,/3_ /12_3;2

3. Find a polynomial function f(x) of the second degree whenf(0) =5,
J(=1) =10, (1)=6.
4. Find the range of each of the following functions:
) f(xy=x*+2,x €R
i) fx)=x, xER

5. The function ‘t' which maps temperature in Celsius into tcmperatﬁre in
degree Fahrenheit is defined by ((c) = 2 +32
Find (i) ((0) (i) £(28) (iii) t(—10) (iv) the value of c, when t(c) =212
6. If fix)=8x=7 find () f'(9) i) f (1—31}
7. Given that flx)=xL ax+bx+1. If {2) = -3 and f{-1)=0, find the value of @ and b.

8. Graph the following. (i) y= _%H 3 (i) y=3x (iii)y=2x"=Tx+3
9. Sketch the graph of the following.
(i) y=x*+2x-3 i)  y=3(x+1)(x-1)
10. Find the point of intersection graphically of the following functions.
(1) f(x)=xt4, g(x)=—2x+3
Gy  f(x)=x*-x-2, g{x)=-3x-3
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Define lirear programming (LP) as planning ol allocation of limited
resources to obtain an optimal result.

Liris

Alter reading this
A WA v ¥

AT
S s

Find algebraic solutions of linear inequalities in one variable and represent
them on number line.

Interpret graphically the linear inequalities in two variables,

Determine graphically the region bounded by up to 3 simultaneous linear
inequalities of non-negative variables and shade the region bounded by them.
Define

» lipear programming problem,

o objective function,

» problem constraints,

o decision variables.

Define and show graphically the feasible region {or solution space) of an
LP problem.

Identify the feasible region of simple LP problems.

Define optimal solution of an LP praoblem.

Find optimal solution (graphical) through the following systematic procedure:
establish the mathematical formulation of LP problem,

construct the graph,

identify the feasible region,

locate the solution points,

evaluate the objective function,

select the optimal solution,

verify the optimal solution by actually substituting values of variables
from the feasible region.

Solve real life simple LP problems.

& 9 S & & B
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9.1 Introduction

In business and industry, the decision makers want to utilize the limited
resources in a best possible manner with the view to minimize cost of production
and maximize profit. The limited resources may be in the form of capital, labour,
money, time manpower, machine capacity, etc. The linear programming is the
mathematical method used in decision making in business to maximize the profit
or minimize the expenditure subject to certain restrictions which are a result of
limitations on resources.

The term programming means planning and refers to a process of
determining a particular program. The term linear means that alt refationships
involved in a particular program which can be solved by this method are linear.

Thus linear programming is a method for solving problems in which a linear
function (representing, cost, profit, distance, weight etc.) is to be maximized or
minimized. Such problems are usuaily referred to as optimization problems or
more commonly known as linear programming problems.

The theory of linear programming is 2 fairly recent advancement in mathematics.
It was developed over the past four decades to deal with the increasingly more
complicated problems of our technological society.

Linear programming (LP) is planning of allocation of limited resources (o
obtain an optimal result.

9,2  Linear Inequalities

Recall that an inequality is a statement that one mathematical quantity is less than
(or greater than) or less than or equal to (or greater than or equal to) another
quantity. Thus, if a and b are real numbers, we can compare their positions on the
real line by using the relations of less than, greater than, less than or equal to, and
greater than or equal to, denoted by inequality symbols <,>,< and > respectively.
The following table describes both algebraic and geometric interpretations of the
inequality symbols.

Slgeihr = ;
’ Pnprvalent Shaleinent Cprnmpeitie Statement

Staleine

a<b a is less than b a lies to the left of b.

a>b a is greater than b a lies to the right of b.

a<b a is less than or equal to b a coincides with b or lies to the left of b.
az2b a is greater than or equal tob | acoincides with b or lies to the right of b.
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In this section, we shall consider linear inequalities in one variable and
two variables. We shall also interpret these inequalities graphically.

9.2.1. Linear inequalities in one variable

Inequalities of the form ax < b, ax < b, ax > b or ax > b where a% 0, b are
constants are called linear inequalities in one variable or first degree
inequalities in one variable.

For example, x < -2, 2x <6, 4~ 3x >—] —x, 2x + 5 >x 3 are linear inequalities in
one variable.

The solutions of a linear inequality in one variable x are the values of x
which satisfy the linear inequality. The set consisting of all solutions of the linear
inequality is called the solution set.

For example, the solution set of the linear inequality x > 5 consists of ali
values of x that are greater than 5. _

We solve a linear inequality in the same way as we solve a linear equation.
Following are the steps involved in solving a linear inequality in one variable.
Step I Shift all terms containing ¥ on one side of the inequality.

Step I1 Shift all other terms on the other side of the inequality.
Step I Simplify the resulting inequality to find the values of x.
Example 1: Solve the linear inequality x - 5 > 0.
Solution: Since the only term containing x is on the left side, we need to shift the
constant term to the other side. To do this, we add 5 to both sides and then
simplify. x-5>0

x-5)+5>0+5

x>5

Thus, the solution of the inequality are all values of x that are greater than 5.

The solution set = { x: xR and x> 5 }

The solution set can also be written alternatively in the form of interval (5, =0).
Example 2: Solve the inequality 3x — 2 > 8 + 5x

Solution: To solve the given linear inequality, we use step (I)-(III) to obtain the

following equivalent inequalities. /= -
Did You Know @
3x-2>8+5x ;‘ .

(3x —2) - 5x > (8 + 5x) - 5x When both sides of an inequality are multiplied

2x—-2>8 by a negative number, the order (or sense) of
; the inequality is reversed, that is from
(2x-2)+228+2 <to>, from <to >, from > to < or from > to <.
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-2x =10

[-Lz](_ z.r)s(— %J(m),

/

x<~5 Thus, the solution set ={ x : x € IR and x&-5} = (—o0, -5]

Note 1

In the above graphical representation of linear inequalities in one variable on

the real line, the open (unshaded) circle at the point indicates that the point does
not belong to solution set. The filled in {shaded) circle at the point indicates that
the point belongs to the solution set.

The solutions of linear inequaiities in one variable are graphicaily represented
on the real line in the following examples.

() 1<3 " e—pp———f——t——t—j=—t—1—0>
4. -3 20 100 1 &@v 3 4

(i)} o]l e O e e
4 3 -2 41 0 1 2 3 4
= l l | 1 1 L I L

< — ! ! RV Pl EETR
(iii) x<2 54" gy Ry 0 1 7] ¥ 4

| 1 ] 1 | | 1 ([ -

) -+ T 1 1 —¢ ] | | | 1 ==
(iv) x=-1 4 3 2.1 0 1 2 3 A4

9.2.2. Linear inequalities in two variables

A linear inequality in two variables x and y is an expression of one of the
following forms.

(i) ax+by<c (ii) ax+by>c

(ili) ax+by<c (iv) ax+by=c

where a and b are not both 0 and a, b and c are real numbers.

If a = 0 or b = 0 in the above inequalities, then the resulting inequalities reduce to
the corresponding linear inequalities in one variable.

For example, (i) 3x<2 (iij)4x+320 (iii) x- 2y >1 (iv) 5x+ 3y <1 are linear
inequalities. Inequalities (i) and (ii) are in one variables while (iii) and (iv) are in
two variables. With each linear inequality in two variables x and y is associated a
linear equation in two variables x and y called the associated or corresponding
equation.

For example, the associated equation of ax + by 2cisax+ by =c.. ........... (1)
To find the associated equation of a linear inequality in two variables, simply
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substitute an “equals” sign for the symbol of inequality. In our later work we will
see that the linear equation (1) in two variables represents a straight line.

The solution set of an inequality is the set of all numbers, which when substituted
for the variable (or variables) in the inequality, make the inequality a true
statement. To solve an inequality is to find its solution set,

9.2.2.1 Graphing Inequalities in Two Variables

Since linear inequalities are closely related to linear equations, graphing them is
very similar to graphing linear equations. The graph of a linear equation of the
form ax + by = ¢ is a line which divides the plane into disjoint regions as stated
below.

@) The set of ordered pairs (x, y) such that ax + by < c.
(2) The set of ordered pairs (x, y) such that ax + by >c.

The regions (1) and (2) are called half-planes.
The line ax + by = ¢ that divides the plane is
called the boundary of both half planes.

(See figure 9.1). If the boundary line is gﬁfryl?c] Ap<c
included in either plane then it is called |ghove the line i.e. half-plane

Y, :
&
Boundury axthy=e

below the line

closed half plane. Since a plane has |[#vhy=c yd axtby =c X
infinite length and breadth, it cannot be /’f O
completely shown by a figure. Only a /
segment of the plane has been shown in /
the figure. 5

— Figure 9.1

Mote 4I

A vertical line divides the plane into left and right half-planes while a
non- vertical line divides the plane into upper and lower half—planes.

A Solution of a linear inequality in two variables x and y is an ordered pair of real
numbers (a, b) such that the inequality is satisfied when we substitute x = g and
y=b.

For example, the ordered pair (-1, 2) is a solution of the inequality 3x + y < 5,
since 3(-1)+2=-3+2=-1<5 which is true.

The graph of a linear inequality in two variables x and y is the set of all ordered
pairs that satisfy the inequality. T

The graph of a single inequality, in more than two variables, is a half-plane.
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9.2.2.2 Procedure for Graphing a Linear Inequality in Two variables
To graph a linear inequality, we follow the following procedure,
Step-1: Replace the inequality sign with an equal sign and draw the line.

Make the line solid if the inequality involves Sor 2 , make the line dashed if the
inequality involves < or >.

Step-2:  Choose any point that is not on the line as a test point. If the origin
is not on the line, it is the most appropriate choice.
Step-3: Substitute the coordinates of the test point into the original

inequality. If the test point satisfies the inequality, shade the half-plane that
includes the test point, otherwise, shade the half-plane on the other sides of the

— (Did Yoo Kaow LED)
Example 3:  Graph the inequality 2x - 5y = 10.

Solution: The associated equation of the inequality is If a line intersef:ts X—axis
at (@,0), then a is called .

2x-3y 2 10 (i) \ :
’ x—intercept of the line.
2x-35y = 10 (i) If a line intersects y—axis
Graph the line (i) by finding x—and y—intercepts. at (0,b),then b is called
To find the x— intercept, let y=0. y—intercept of the line.

To find y-intercept, let x=0.
We have 2x-5(0) = 10

= x=35
and 2(0) ~5y =10
= y = 2

Therefore, the boundary line passes through (5, 0) and (0,-2).
The line issolid because the inequality involves 2.
We choose O(0,0) as a test point, because it is not on the line (i1)
Substituting x= 0,y= 0 into the original inequality,
2x-5y=10
we get 2 () -5 (0)=2 10
= 0210
which is not true. Therefore the test point does not
satisfy the inequality, and so the solution is not the
half—plane that includes the origin.
Thus the solution is the half—-plane not containing the
origin (see figure 9.2).

Mathcimatics-XI1




Unit 9 | Linear Programming

Example 4:  Graph the inequality y >x —4.

Solution: The associated equation of the inequality is
y>x—-4 (i)
y=x-4 (ii)

To find the x—intercept put y=0in (i)
O=xr4= x=4

Similarly to find the y-intercept put x=0 in (ii),

y=0-4
= y ==
Therefore the boundary line passes through (4, 0) and y

(0, ~4). The line is dashed because the inequality
involves>. We choose O (0,0) as a test point, because

s i, AT 4,0),74

it 1s not on the line (ii). al ana Rl (,l’f’ -~
i - m LA r 4 L=t Tt At >

Substituting x = 0, y=0 into the original inequality &1 pz

y >a—4 weget 0>0-4 =0>-4

which is true. Therefore the solution is the half—plane
that includes the origin (see figure 9.3).

9.2.3. Region bounded by 2 or 3 simultaneous inequalities

(i.e. System of Linear Inequalities in Two Variables)
Two or more linear inequalities together forin a
system of linear inequalities. The graph of a system
of linear inequalities in two variables v and y is the

set of ‘all ordered pairs (r, y) that satisfy
simultaneously each of the linear inequalities in the
system. Thus, the graph of a system of linear
inequalities can be obtained by graphing each

inequality individually and then taking intersection
of all the graphs. The common region so obtained is
called the solution region for the system of linear inequalities.
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Example 5: Graph the system of linear inequalities.
Zx -y = 4
x+y 2z 2
Solution: Following the procedure for graphing linear inequalities, the graph of
the line 2x — y= 4 is drawn by joining the points (2, 0) and (0, —4). The test point

(0,0) satisfies the inequality, so the graph of the y

inequality 2x — y < 4 is the upper half-plane including i, L
: rapn

the graph of the line 2x — y =4. The closed half-plane is N _P;.g '

partially shown as a shaded region in Figure 9.4.

The graph of the line x +y=2is drawn by joining the
points (2,0) and (0, 2). The test pint (0, 0} does not
satisfy the original inequality, so the graph of the e 9.5
inequality x + y 2 2 is the closed half-plane not on the origin side of the line
x+y=2. The closed half—plane is partially shown by shading in the figure 9.5.

The solution region of the given system of linear inequatlities is displayed in
figure 9.6 by the shaded overlapping region of the graphs 2x-y=d
shown in figure 9.4 and figure 9.5. The point (2, 0) is the
intersection point of the graph of the system of
inequalities that can also be found by solving the ™

Figur

equations 2x—y=4 and x +y =2
Example 6: Graph the solution region of the following Figure 9.6

system of linear inequalities in each case.
2x —y £ 4 x—2)'56}
a) x+y 2 2y b)) 2x+ y 2 2
-x+2y = 4 x +2y £ 10
Solution:(a) The graph of the inequalities 2x —y < 4 and x + y 2 2 have already
been plotted in figure 9.4 and figure 9.5 respectively and their solution region

partially shown in figure 9.6 of example (5).

Following the procedure for graphing of linear inequalities, the graph of the
inequality —x +2y <4 is partially shown in figure 9.7.

The intersection of the three graphs is the required solution region which is the
shaded triangular region ABC (including its sides) shown in figure 9.8,
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Figure 9.7

(b)  The graph of the line x~2y=6 is drawn by joining
the points (6,0) and (0,-3). Since the test point (0, 0)
satisfies the inequality x - 2y < 6, thus the graph of
X —2y < 6 is the upper half-plane including the graph -
of the line which is partially shown by a shaded region in
figure 9.9,

The graph of the line 2x + y = 2 is drawn by joining the
points (1, 0) and (0, 2). Since the test Point (0, 0) does
not satisfy the inequality 2xv + y > 2, thus the graph of
2x+y22 is the closed half-plane which is shown
partially as shaded region in figure 9.10.

The graph of the line x + 2y = /0 is drawn by joining the
points (10,0) and (0,5). Since the test point (0,0) satisfies
the inequality x+2y < 10, thus the graph of x + 2v <10 is

the lower half-plane including the graph of the line which

is partially shown by shading in figure 9.11.

The required graph of the solution region of the system is
the shaded overlapping triangular region ABC (including
its sides) termed by the three graphs as shown in

figure 9,12,
In example (6), we see that the solution region of either

Figure 9.11
system is the shaded triangular region ABC as solution in

figures 9.8 and 9.12 respectively where A, B and C are
the points of the solution regions, obtained by the
intersection of its boundary lines. Such points are
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termed as corner points or vertices of the solution
region. Thus,a point of a solution region where

two of its boundary lines intersect, is called a
corner point or a vertex of the solution region.
The corner points of the solution region can be
obtained by solving the associated equations of
linear inequalities in pairs.

For example, in example 6 (a) the following three Figure 9.12

corner points are obtained by solving the associated equations of the inequalities in
airs.

issociated Equations of Inequalities Corner Points

2x-y=4, x+y=2 A2,0)

2x—-y=4, -x + 2y=4 B 4,4)

xX+y=2, -x+2y=4 C(0,2)

The graph of a solution region of the system of linear inequalities may be either

bounded or unbounded. The graph of the solution Y

region is bounded if it can be enclosed within
some circle of sufficiently large radius while the
graph of the solution region is unbounded, if it
cannot be enclosed in any circle how large its
radius may be. In example (5), the solution region
is unbounded while in example (6), the solution
region of both systems (a) and (b) is bounded.

Example 7: Graph the solution region of the following
system of linear inequalities and find their corner points. Also check whether the

graph of the solution region is bounded or not. y
2x +3y <£6
2x =3 <6 ' ;
y /{é
x 20 4
X

Solution: The associated egquations of the
linear inequalities
2x+3y £ 6 and 2x-3y< 6
are 2x+3y =6 (i) and 2x-3y =6 (ii)
The graph of line (i) is drawn by joining the points 3, 0) and (0, 2).The test point
(0, 0) satisfies the inequality. Thus the graph of the inequality 2x + 3y < 6 is the

Figure 9.14
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lower half plane including the graph of the line. The closed half plane is partially
shown as a shaded region in figure 9,13, A

The graph of the line (i) is drawn by joining the
points (3, 0) and (0, —2). The test point (0, 0) satisfies
the inequality. Thus the graph of the inequality
2xr—-3y <6 is the upper half-plane including the
graph of the line. The closed half plane is partially
shown by a shaded region in figure 9.14,

The graph of x> 0 is the right half-plane including
the graph of the line x = 0 (the y—axis) of the linear y
inequality x> 0. The graph of x2 0 is partially shown :
in figure 9.15. The solution region of the given
system of linear inequalities is the intersection of the 4
graph partially shown in figure 9.13, figure 9.14
and figure 9.15. This region is displayed as the
shaded overlagping region in (Figure 9.16) . Figure 9.16

The corner points are A (0, -2}, B(3,0) and C(0,2). The graph of the solution
region is clearly bounded,

EXERCISE 9.1

1. Solve the following inequalities and graph the solution set in each case

i xX+3<7 (i) -3x-2<4
(iii) “X+ys2 (iv) 2x-3y>6

2. Graph the following systems of linear inequalities.

(i) 2x-3y$12} @) *-ysl

3x +2y £ 6 Xty 24
(iii) 2¢ + y 2 4 (ivy 2x + y < 8
% de 87 23 & X+ y <6
x 2 0 yz 0
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3. Graph the solution region of the following system of linear inequalities and find
the comner points in each case. Aiso tell whether the graph is bounded or

unbounded.

(i) 2 xS VRS H0 (i) 2x+ 3y =26
x +2y £ 6 x+ yz24
x.z2 0 y 2 0

4. Graph the solution region of the following system of linear inequalities and find
the corner points in each case. Also tell whether the graph is bounded or
unbounded.

(i) 2x8EE3 YR <2 (i) 2x ty 2
3x + vy <12 x+ y <5
S ah ey > 2

9.3  Feasible region

9.3.1 Define linear programming problem, objective function, problem

constraints and decision variables
As mentioned earlier, linear programming consists of methods for finding the
maximum or minimum value of a linear function in two variables of the form

f(x,y) = ax + by;a,belR,

where the variables x and y are subject to the set of conditions or constraints given
in the form of linear inequalities. In order to maximize or minimize the linear
function f(x, y) = ax + by, called the objective function, we need to find points
(x, y) that make the function largest (or smallest) possible. Such points occur at
the corner of the feasible region as the following theorem asserts.

“The maximum (or minimum) value of the objective function is achieved at one

of the corner of the feasible region.”
Many practical problems arising in the field of business, economics, the sciences

and engineering involve systems of linear inequalities. In such problems the

choice of values of the variables is not entirely free but subject to some
restrictions or conditions given in the form of linear inequalities. The
linear inequalities involved in the problem are called problem constraints. The
variables used in the system of linear inequalities relating to the problem are
non-negative and called non-negative constraints or decision variables.
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The graph of the solution region of the system of linear
inequalities

x-2y<6

2x+y22

x+2y<10
is given in (Figure 9.17).We observe that the solution
region of the sysfem of linear inequalities is not always
within the first quadrant. However, the solution region
can be restricted to the first quadrant if the
non-negative constraints x>0,y 2 0 are included in

the system of linear inequalities. [n example 6 (b),

if v 20 andy = 0 are included within the system
of linear inequalities, then the solution region can
be restricted to the first quadrant.It is the polygonal
region ABCDE (including its sides) as shown in
Figure 9.18

9.3.2 A region (which is restricted to the first quadrant) is referred to as a feasible
region. Each point of the feasible region is called feasible solution of the system
of linear inequalities (or for the set of given constraints). In other words any
ordered pair (x, y) that satisfies all the constraints is called a feasible solution of
the system of linear inequalities and the set of all feasible solutions is called a
feasible selution set.

Example 8: Graph the feasible region of the following system of linear
inequalities.

Figure 9.18

3x +5y €15
-x +3y € 3
x 20
y =2 0
Solution: The associated equations for the inequalities
3x+5y< 15 and -x+3y<3
are  3x+5y=15 (i) and -x+3y =3 (ii)

The graph of line (i) is drawn by joining the points (5, 0) and (0, 3)by a solid line.
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Similarly, the graph of line (ii) is drawn by joining
the points (-3, 0) and (0,1) by a solid line.

Since the test point (0, 0) satisfies both the
inequalities 3x+5y<15 and—x+3y<3, so both the
closed half-planes are on the origin sides of line
(i) and (ii).

The intersection of these closed half- planes
is the shaded overlapping region as shown in Figure 9.19

Figure 9.20

The graph of x 20 is partially shown in Figure 9.20. The
intersection of graphs shown in Figure 9.19 and Figure
9.20 is partially displayed as a shaded region in Figure
9.21.

The graph of y > 0 is partially plotted in Figure 9.22.
The intersection of graphs shown in Figure 9.19 and
Figure 9.22 is partially displayed as shaded region in
Figure 9.23.

The graph of the given
system of linear inequalities
is the intersection of the
graphs shown in Figure 9.21
and Figure 9.23 which is
indicated as shaded region in :
Figure 9.24. This shaded Figure 9.23

region is the required feasible region of the given system of linear inequalities.
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Example 9: Graph the feasible region subject to the following constraints.

(a) vy —4y £ 12 (h) v —4y £ 12 Did You Know ':?
3x +2y =2 6 3x +2y 2 6
x 20 x4+ 2y €10 The feasible solution
y 20 >0 region in example 9(a)
v >0 is ur.lbounded.while the
.Solutio.n.: (a) The associated equations for the gﬁa:;glrf];&lugn(%[; ir;:glon
inequalities 3x—4y< 12 and 3x+2y 26 L,

are 3x—4y = 12 (i) and 3xv+2y=6 (ii)
The graph of line (i) is drawn by joining the points (4, 0) and (0, -3) by a solid
line. Since the test point (0, 0) satisfies the inequality 3x ~ 4y £ 12, so the graph of
3x — 4y < 12 is the closed half-plane on the origin
side of line 3x — 4y = 12. The graph of system
3x -4y 512

xz20

y=20 e
is partially shown as shaded region in Figure 9.25.
Similarly, the graph of line (ii) is drawn by joining
the points (2, 0) and (0, 3) by a solid line. Since the .
test point does not satisfy the inequality 3x + 2y 2 6,
5o the graph of 3x + 2y 2 6 is the closed half-plane not on the origin side of the

line 3x+ 2y = 6. The graph of system
3x + 2y 26
x20
Yy 2 0 is partially drawn as shaded
region in Figure 9.26.
The graph of the system
3x - 4y €12
3x+2y 26
x 20
y=20
is the intersection of the graphs shown in (Figure 9.25) and Figure 9.26
figure 9.26 and it is partially displayed in (Figure 9.27) as shaded region.
This shaded region in the graph of the feasible region subject to the given
constraints.

v IV v
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Corner Points: (2,0), 4,0), (0,3)
(b) The graph of the system
- 3v -4y <12
3x+2y 26
0

v

. X

[\

y= 0 is partially shown in Figure 9.27

The graph of the system

x+ 2y £ 10
x=20
y = 0 is shown by shaded region in figure 9.28

The graph of the system

3x - 4y €12
3x+2y <6 Figure 9.28
x+ 2y =10

xz0

y > 0 is the intersection of the graphs shown in figure 9.27 and figure
9.28 and it is indicated in figure 9.29 as shaded region.
Corner Points:
.0, @0, (=.=) @903

9.4. Optimal solution

9.4.1 There are infinitely many feasible solutions
in the feasible region. The feasible solution which
maximizes or minimizes the objective function is

called the Optimal Solution. Figure 9.29
The procedure for finding the optimal solution (maximum or minimum value) of
the objective function f(x, y)= ax + by, subject to a set of linear constraints

(inequalities) in variables vandy is as following:

Mathematics-XI




Unit 9 | Linear Programming

9.4.2 Procedure for determining optimal solution

Step-1: Determine the feasible region by graphing the linear inequalities
that form the constraints.

Step-2: Find the corner points of feasible region by solving two equations
at a time of the boundary lines of the feasible region.

Step-3: Compute the value of the objective function f{x,y) = ax+by at each
of the corner points.

Step4: To find the optimal solution, select the largest value computed in
step-3 if f{x,y) = a x+by has to be maximized, and select the
smallest value if f{x, ¥) = ax + by has to be minimized.

Example 10: Find the maximum and minimum values of the function

Sfx, y) =2x + 3y subject to the constraints

x - yz-l1
X+ y< 35
x= 0
y=2 0

Solution: The graph of the inequality 3x — y > —1is the closed half-plane on the
origin side of the line 3x — y = =1 and the graph of the inequalityx + y <5 is
the closed half-plane also on the origin side of the line x + v = 5.

The graph of the system

3x - y2-1
X+ y< 5
xz 0
yz 0

is shown as a shaded region in Figure 9.30.
This shaded region is the feasible region. -———t——
We see that the feasible region is bounded
and its corner points are 0(0,0), A (5, 0), B(1, 4)
and C (0,1). Evaluating the given function
J(x, y) at the corner points, we get
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£(0,0) = 2(0) + 3(0) = 0
£(5,0) = 2(5) + 3(0) = 10
f(1,4) = 2(1) + 34) = 14 .
£(0,1) = 2(0) + 3(1) = 3
Thus the minimum value of f(x, y) is O at the corner point O(0, 0) and the
maximum value of f{x, y) is 14 at the corner point (1, 4).

Example 11: Find the maximum and minimum value
of the function f{x,y) = 4x+ 2y subject to the constrainis

x+2y<38
X+ y<35 .
2¢x+ y <8 -
x20
y=290
Solution: The solution region of the system
x+2y <8 Note
x+ y<5 : A
Jx+ y<8 In example 11, tl_le fupctlon f(x, y) has maximum
value at two corner points (4,0) and (3,2). It follows
xz20 that f{x, y) has maximum value at all the points of
y2 0 the line segment between the-poi_nts (3,2) and (2,3).

is the shaded region OABCD shown in figure 9.31. We see that the feasible
region is bounded and its corner points are O(0, 0), A 4, 0), B (3, 2), C(2,3) and
D (0, 4). We compute the values of the function f(x, y) at the corner points to find
its maximum and minimum values. The value of f(x, y) at the corner points are
given in the following table.

XDy =X + 3y
0.0y =2(0) +2(th = O
A0y = () o+ 20 = 16

SRR BT R0

From the above table, we see that the minimum value of the function f(x,y) is O at
the corner point (0, 0) and the maximum value of f(x, y) is 16 at the corner points

(4, 0) and (3,2).
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9.4.3. Real life LP Problems

To solve a linear programming problem, first formulate a mathematical model of
the problem and then use the procedure given in section 9.4 to solve it.
Mathematical formulafion of a linear programming problem

The mathematical formulation of a linear programming problem involves the

following basic steps:

Step 1 Identify the decision variable and assign symbol x and y to them. These
decision variables are those quantities whose values we wish to determine.

Step 2 Identify the set of constraints and express them as linear equations /
inequations in terms of the decision variables, These constraints are the
given conditions.

Step 3 Identify the objective function and express it as a linear function of
decision variables. It might take the form of maximizing profit or
production or minimizing cost.

Step 4  Add the non-negativity restrictions on the decision variables, as in the
physical problems, negative values of decision variables have no valid
interpretation,

Example 12: A furniture dealer deals in only two items, viz., tables and chairs.

He has Rs. 10,000 to invest and a space to store at most 60 pieces. A table costs

him Rs. 500 and chair Rs. 200. He can sell a table at a profit of Rs. 50 and a chair

at a profit of Rs. 15. Assume that he can sell all the items that he buys. Formulate
this problem as on LPP, so that he can maximize the profit.

Solution: Let v and y denote the number of tables and chairs respectively (x and ¥

are decision variables).

The cost of x tables = Rs. 500.x, The cost of y tables = Rs. 200 y
Therefore, the total cost of v tables and y chairs = Rs. (500 x+ 200 ), which
cannot be more than 10000. Thus  500x + 200y < 10000 (Constraint)

Also, x + y < 60 (constraint) as the dealer has the space to store at the most 60

items. It is obvious that x > 0, y> 0 (non-negative restrictions) as the number of

tables and chairs cannot be negative.

Profit on x tables = 50x,  Profit on y chairs = 15y
Hence, the profit on x tables and y chairs = Rs. 50x + 15y (objective function).

Obviously, the dealer wishes to maximize the profit Z=50x+ 15y
Thus, the mathematical formulation of the LPP is

Maximize Z = 50x + 15y subject to the constraints
Sx+2y<100
X+ y=60
x>0, y=0
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Example 13: A factory produces two types of food containers A and B by using
two machines M; and Ma.. To produce container A, M; works 2 minutes and M, 4
minutes. Similarly, to produce container B, M,, works 8 minutes and Ma, 4
minutes. The profit for container A is Rs. 29 and for B is Rs. 45. How many
container of each type should be produced so that a maximum profit can be
achieved?

Solution: Let x = the number of container A per minute and
y = the number of container B per minute.

If per hour production of M; and M is x container A and y container B, then the
profit per hour is given by the profit function P (x, y) = 29x + 45y.

The constraints are
2x+ 8y< 60 (Resulting from machine M;)
4x+ 4y< 60 (Resulting from machine M»)
x
y
The above system of linear inequalities/ constraints can be written in the
following simplified form

x+ 4y < 30

x+ y £13

v W

0 } (since container cannot be negative)

xz 0
yz 0
We maximize the profit function P under the given constraints.

As before, graphing the linear inequalities, y
we obtain the feasible region OABC which
is shaded in Figure 9.32. Solving the equations
x + 4y =30 and x + y=15, we get x = 10, »=5,
that is, their point of intersection is (10, 5).

Thus, the comer points of the feasible region

are 0(0,0), A(15,0), B(10,5) and C 0, 3‘49).

Figure 9.32
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We find the value of the function P at the corner points.

oy |
i V) = 20K + i3y
(0,0) - P (0,0) =29 (0)+45(0) = 0
(15, 0) P (15, 0) =29 (15) +45 (0) = 435
(10, 5) P (10, 5) =29 (10) + 45 (5) = 515
(©, 349) P (0, % ) =29 (0) + 45 cj?‘49- )= 337.50

From the above table, we see that the maximum profit is Rs. 515 per hour at the
corner point B (10, 5). Thus, the optimal production plan that maximizes the
profit is achieved by producing 10 containers of A and 5 containers of B.
Example 14: A farmer possesses 80 acres of land and wish to grow two types of
crops A and B. Cuitivation of crop A requires 3 hours per acres and cultivation of
crop B requires 2 hours per acres. Working hours cannot exceed 180. If he gets a
profit of Rs. 50 per acres for crop A and Rs.40 per acre for crop B, then how
many acres of each crop should be cultivated to maximize his profit.
Solution: Let x = Acres required for cultivation of crop A

and y = Acres required for cultivation of crops B.
If P(x, y) is the profit function, then

P(x, y) = 50x + 40y
The constraints are

x+ y< 80 (Restriction of land)
3x+ 2y £ 180 ( Restriction due to time

> . .
x 20 Non-negative constraints,
y 20 since acres cannot be negative

Figure 9.33
Graphing the inequalities,we obtain the feasible region OABC which is displayed
by shading in figure 9.33. Solving x + y = 80 and 3x + 2y =180,
we get x=20 and y= 60, that is their point of intersection is (20, 60). Thus the
corner points of the feasible region are O(0, 0), A (60, 0}, B (20, 60) and C (0, 80).
We find the values of the function P at the corner points.
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Corner Points Pix. vir= 30+ 0y
0, 0) P(@0,0) =50 +40(©0) =0
(60, 0) P (60, 0) = 50 (60) + 40(0) = 3000
(20, 60) P (20, 60) = 50 (20) + 40 (60) = 3400
(0, 80) : P (0, 80) = 50 (0) + 40 (80) = 3200

From the above table, we see that the maximum profit is Rs. 3400 at the corner
point (20, 60). Thus, the farmer will get the maximum profit if he cultivates 20
acres of crop A and 60 acres of crop B.

EXERCISE 9.2
| Graph the feasible region of the following system of linear inequalities and also
find the corner points.

(i) 24 ap ySG (ii) 31—)’2—4
4x + y £ 8 x + y =< 5
x 20 x =z 0
y 20 y 2 0
(i) 2+ y = 6] (W x+ y2 3]
2x + 3y < 12 2x + 3y £ 12
-x+ y< 2 53 = 1 SULS Tk
x 2 0 x =z 0
y =2 0] y 2 0]
2, (1) Maximize f(x, y) = 2x + y subject to the constraints
x+y<6
x+y=21
x,y20
(i1) Maximize f(x, y) = 3x + 5y subject to the constraints
2x+3y €12
3x+2y <12
x+ y=22
x 20
y 20
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3. (i) Find the maximum and minimum values of the function f(x,y)=5x+2y
subject to the constraints

(i) Find the maximum and minimum values of the function f(x,y)=7x+2ly
subject to the constraints

x4+ y 22

. 2v+3y < 6
x+2y <8

x 20

y 20

4. A company manufactures two models of bicycles, model A and model B by
using two machines M; and M,. Machine M, has at most 120 hours available and
machine M; has a maximum of 144 hours available. Manufacturing a model A
bicycle requires 5 hours in machine M; and 4 hours in machine Mz and
manufacturing of a model B bicycle requires 4 hours in machine M, and 8 hours
in machine M,. If the company gets profit of Rs. 40 per model A bicycle and
profit of Rs. 50 per model B bicycle, how many of each model should be
manufactured for maximum profit?

s} A machine can produce product A by using 2 units of chemical and | unit
of a compound or can produce product B by using 1 unit of chemical and 2 units
of the compound. Only 800 units of chemical and 1000 units of the compound are
available. The profit per unit of A and B are Rs. 30 and Rs. 20 respectively.
Determine how many units of each product should be produced to achieve the
maximum profit.

6. A company manufactures and sells two models of lamps, L, , L2, Use the
following table to determine how many of each type of lamps should be produced
to achieve a maxirnum proﬁt'?

odel L- ’ !\1a\|mum lTlrnc. Available
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(1)

(i1)

(111)

(iv)

(v)

(vi)

REVIEW EXERCISE 9

Choose the correct option

The solution of the system of inequalities x >0, x—5 <O and x > y
is a polygonal region with the vertices as

(a) (0,0), (5.0), (5.5) (b) (0,0), (0,5), (5.5)

(c) (5,5), (0,5), (5,0) (d) (0,0), (0,5). (5,0)

Find the profit function p if it yields the value 11 and 7 at (3,7) and
(1,3) respectively

(a) P= —8x + 5y (b)p=8x — S5y

(c) p=8x +5y (d)p= —(8x +5y)

The vertices of closed convex polygon representing the feasible
region of the objective function are (6, 2), (4, 6), (5, 4) and (3, 6).
Find the maximum value of the function f=7x + 11y

(a) 64 (b) 79 (c) 94 (d) 87

Which of the following is a point in the feasible region determined
by the linear inequations 2x + 3y <6 and 3x — 2y < 167

@ (4 -3) (249 ©G-2) DG -9
The maximum value of the function f= 5x + 3y subjected to the

constraints x >3 and y > 3 is
(a) 15 (b)9 (c) 24 (d) does not exist

Maximize Sx + 7y, subject to the constraints 2x + 3y < 12,
x+y<5x>0andy=0

(a) 29 (b) 30 (c) 28 (d) 31
Maximize Z= 4x+3y subject to the constraints
3x + 4y<24 )
8x + 6y <48
<= ESH
y £ 6
x,yz 0 |
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3. A dietician wishes to mix together two kinds of food X and.l_':in‘such a way
that the mixture contains atleast 10 units of vitamin A, 12 units of vitamins
B and 8 units of vitamin C. The vitamin content of one kg,!food-is; given below:

— —5‘7."..*}_

! jd.

J i, ik

-'t

One kg of food X costs Rs.16 and one kg of food Y costs Rs. 2()'aF1nd the least
cost of the mixture which will produce the required'diet. 4 ;" M

4. Find the maximum and minimum values of the functlm*z 5x+ 10y
subject to the constraints :: N
x +2y >120 &
x+ y>60 4
x-2y >0

xy>0
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TRIGONOMETRIC IDENTITIES OF
SUM AND DIFFERENCE OF ANGLES

Oppesite

l

I* Adjacent . %

Alicr reading this unil. the students will be able wo:

B il 3 g i e i Wy i et i

Use distance formula to establish fundamental law of trigonometry
e cos(a—f) = cosacosp + sinasinf, and deduce that

N4 ZmocC Hwn

e cos(a + B) = cosacosf- sinasinf,
s sin(axf ) = sinacosf+ cosasinf,
tanattanf

e tan(atp)=
TR 1ttanotanfs

s Define allied angles

» Use fundamental law and its deductions to derive trigonometric
ratios of allied angles

» Express a sinf + b cos in the form r sin(8 +¢ ) where a =rcos ¢
andb=rsing

s Derive double angle, half angle and tripie angle identities from
fundamental law and its deductions.

» Express the product (of sines and cosines) as sums or differences
(of sines and cosines)

+ Express the sums or differences (of sines and cosines) as products
(of sines and cosines)

MV Z —ZD>mr

VwM=T OO H4C O
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10.1 Introduction

In the previous class some basic trigonometric identities have been proved
and applied to show different trigonometric relations. This unit is a continuation
of derivations of different trigonometric identities. These identities play an
important role in calculus, the physical and life sciences and economics, where
these identities are used to simplify complicated expressions.

We shall first establish the fundamental law of trizonometry so as to be
able to deduce other trigonometric identities. s

10.1.1 Fundamental law of trigonometry
cos(x— ) =cosacos f+sinasin S......(1) /’MT

A{cos a, sin o)

Bicos f, sin [}

D{cosa- g, sina -3}

Consider the given unit circle with
= Cc{1,0} X

centerat O. X )

To establish the identity (1), we use the unit
circle shown in Figure 10.1. The angles «
and [ are drawn in standard position, with
0A and OB as the terminal sides of & and B,
respectively.

Figure 10.1

-

The coordinates of A are (cosq, sinay),
The coordinates of B are(cosf, sin[?;).

The angle (2—f) is formed by the terminal sides of the angles a and . An angle
equal in measure to angle (a-p) is placed in standard position in the same figure

(£coD).
From geometry, if two central angles of a circle have the same measure, then the

respective chords are also equal in measure. Thus the chords AB and CD are
equal in length. Using the distance formula, we can calculate the lengths of the

chords AB and CD.
The length of a line segment with end points (x, y;) and (xz, y») is given by the
following distance formula

d =| R B | = \/(xz_xl)z +(y2_yl)2 .

We apply this formula to the chords ABand CD.

As | AB|=|cD], so by distance formula,

\/(cos a—cos )’ + (sin @ —sin )’ = J[cos(a:-ﬁ}—l]z + [sin(a - B)T




Squaring each side of the equation and simplifying, we obtain
(cosa—cos B) + (sina —sin §)* = [cos(a-—ﬂ) --1] + [sin(a:l!—-,t?)]2

=5 cos’a@~2 costcos P+ cos’ f+ sin*a~2sinasin f + sin* B
= cos*(a~ f)-2 cos(a— f) +1+sin’*(@- )

=> cos’a+ sin*a+cos’ B + sin’ f— 2cosa cos f—2sinasin f

= cos* (e~ B)+sin’*(a— f)+1-2cos(c- )
Simplifying by using sin’0 + cos8 = 1, we have
2-2sinarsin f-2cosacos f=2-2cos(ax— ).
Solving for cos(a—p), it gives us

cos(ax— ff) =cosacos f+sin asin S

We refer to (1) as fundamental law of trigonometry.

10.1.2. Deductions from the fundamental law of trigonometry
The following can be deduced from the fundamental law of trigonometry
which are useful and play a significant role in proving the other trigonometry
identities.
® cos(—f)=cos
By Fundamental Law of Trigonometry,
cos(a— ff) =cosacos f+sinasin 5§
Letting =0, we get
cos(0— ) =cosOcos f+sinOsin §
cos(—f) =1-cos f+0-sin
cos(—f) =cos B

(ii) cos(% ~ ) =sin f

By Fundamental Law of Trigonometry,
cos(e— f) =cosacos f+sinasin

* Letting a=-’2£, we get

x r . T,
cos(—— ) =cos —cos f+sin —sin
=B 5 cos B +sin=sin
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cos(%- B=sinf

(i) sirl(-;£ +a)=cos
By identity (2), cos(% —B)=sinf

Letting B=§+u , we get

_cos(f—(-}i-i— a)) =sin [£ + a:) = cos(—) =sin [E + 'af)
M) 2 2.4

= cos @ =sin [% + a] (&3 cos(—a) = cos @)

WA
sm(E +@)=cos
. ¥/ A
(iv) cos(E + ) =—sing

By Fundamental Law of Trigonometry,
cos(a— ff) =cosarcos f+sinasin

Letting f= —-;-t- , we get

cos{a— (—E)) =CO0S a'cos(—-{r-) +sin asin(—f—“l
2 2 2

= cos{a-f-%) =cosa-0+sina(—1)

[ cos(— -’25) = cos% =0, sin(—%) = -—sin—g— = l)

; T .
COS(E +a)=—sinx

(v)  cos(a+ ) =cosccos f—sinasin S

By Fundamental law of trigonometry,
cos(a— ff) =cosacos f+sinasin §




R:placil;g Bby—f, we get e
cos(a@ —(—p)) =cosacos(—f)+sinasin(-S)

Unit 10| Trigonometric Identities of Sum And Difference of Angles ke

~cos(a+ B)=cosacos f-sinasinf (- cos(-f) =cos f,sin(-f) = -sin 8)

(vi) sin(a+ ) =sin arcos S+ cos asin #
By identity (5), cos(a + ) =cosacos f—sin asin 5
. 7
Replacing o by E-!-a, we get
cos((£+aJ+ﬁ)=c0s(£+a]cosﬂ—sin [E-i-a)sinﬂ
2 2 2
= cos(%+(a+ﬁ)) =cos(—§-+ a)cosﬂ-—sin (%+a’]sinﬂ
By using identities (3) and (4), we get
sin (@ + ) =sin @ cos S+ cosasin 8
(vii) sin{a— B) =sinarcos f—cosarsin
By identity (6), sin(a&+ #)=sinacos +cosasin B
Replacing Sby—/f, we get
sin (@ +(—f)) =sin @ cos(-B) +cosasin (-f)
= sin (e — ) =sin &(cos )+ cos a(~sin J)
(= cos(—B) = cos B,sin(~f) = —sin §)
~.sin{a— f)=sinacos f—cosasin B
(viii)  tan(-8)=—tan®

sin(—=@) _ —sinf _

—_— —J - ' 6
N 9) cos(—8)  cos@ o
. _ tana+tan §
) tmﬂ(aﬁﬁ)_1—tan::ztanﬁ

sin(a+f) _sinacos f+cosasin 8

tan (@ + f) = cos(z+f) cosacos f—sinasin f

Dividing numerator and denominator of R.H.S by cosacos £,




sin & cos f+ cosasin S sincos 8 4.cos arsin 3

cosacos ff cosacos f cosacos f
cosacos S -sinasin 4 cosacos f _sinasin
cosacos cosacos 8 cosacosf

sina h sin

__ cosa cosf
1_sint:tf_ sin #
cosar cosf3

tan@+tan S

|-tanartan B

tan(a+ f) =

_ tana@—tan f§
1+tanatan 4

By identity (ix), tan(a+ ﬂ)-_ll_;%

Replacing Sby—/f,we get
tan (e +(-f)) = ltint:l::n{(__ [;3))
tan @+ (—tan /)
1-tana (—tan 8
tan o—tan
1+tanartan S

Example 1: Find tan15°exactly.

Solution: We rewrite 15° as 45°~30° and using the identity
tan @—tan

an (- ) = oS
l+tan tan S ) 1

tand5°—tan30° 3 V3-1_3-.3

1+tand5"@n30° |, 1" 3+ 3+43

V3

(x) tan (o — )

= tan(a-f)=

] (- tan(—=p) =—tan )

~tan(a-f)=

tan15° = tan(45° -30°) =
Example 2: Find the exact value of: sin42°cos12°~cos42°sin12°.
Solution: Using the identity sin(a— ) =sin@cos f —cosesin £

sin 42°c0s12°—cos 42°sin 12° =sin (42°~12°) = sin 30° = -%

""".xl*;zﬂ,.’a 291}

_J
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Unit 10] Trigonometric Identities of Sum And Differcace of Angies

Example 3: Given sina =% and cos ﬂ=§’ where @ and # are in the first quadrant.

Find in which quadrant does (a+ #) lie.

Solution: Given thata, # are both in the first quadrant. Since cosine is positive in
the first quadrant and negative in the second quadrant, therefore, cos (a + ) will
decide the quadrant in which (a+ g) lies?

cos (a+ ) =cosacos B —sin asin f )

2
As cosla=1-sin’a, puttingsin’a:(%] =

144
169

coslg =]l _169-144 _ 25
169 169 169

cosa = :t%. But cosa is +ve in the 1st quadrant,

—r—y

: S
SCOSa = +-— |
K !

As  sin? f=1-cos® 8, putting in it cos* f= -29;

But sin g is +ve in the Ist quadrant,

B A
smﬁ_ ey

Putting values of sin @, cose, sing and cos £ in (1)

eon= (R 2522

Since cos{ a+ #) is negative, it follows that (& + #) is in the second quadrant.

f‘“ hematics-X1 48]




10.2.1 The angles of measure 12’.1 8,7%8,

exercise.

A . Fi3

1. sin (E—ﬂ)zcosa A
o T .

il. cos (?—9)=sm (7] I

ii. tm(%-&):cota ]

iv. sin(#-8) =sin & ,
V. sin(r+8) =-sin & ,
vi. tan{x—-@)=—tan 8 ,

vil,  sin (37”+9)=—c050 -
viii. sin(9§+a)=—cosa,

ix. tan(%”a»a): cot & ,

X. sin (27-8)=—-sin 8 ,
Xi. sin (2z+8)=sin 8 ,
xii. tan(27-#)=-—tan @ ,

3n
2

Thus the angles which are connected with basic angles of measure 8 by a right

angle or its multiple are known as allied angles.

10.2.2 Derivation of trigonometric ratios of allied angles

All the following trigonometric ratios of allied angles can be derived from the

fundamental theorem of trigonometry and thus has been left for the students as an

+6,2r+8 are called allied angles.

sin (%w) =Cos8
cos{izr-+9) =--sin 8

tan (%+9) =-cot &

cos (#-8) =-cosé
cos(m+8) =—~cosé
tan{x+8) =tan @

cos(%”—-a) =—sin @
K} 4 .
cos(—i-+a)=sm 7]

tan (%-&9) =-—cot 8

cos (2r-6)=cos@
cos (2r+8) =cosé
tan (2r+6) =tan @

Note: |. The above results also apply to the reciprocals of sine, cosine and tangent.
These results are to be applied frequently in the study of trigonometry.
2. They can be obtained by using the following two-steps procedure:
a)
First quadrant
Second quadrant [T T

Third quadrant ~
IFourth quadrant

All are +ve
sin i< +ve
tan is +ve
cos i3 tve




@tﬁgiﬂja“ etric m"wdr&'mb_dﬁ:ﬁm::x&‘t

b) If we have % or 37” in the formula, the formula changes sine to cosine and

cosine to sine, tangent to cotangent and cotangent to tangent,secant to cosecant and
cosecant to secant. If we have Tt or 21 in the formula, the function does not change.
Example 4: Simplify each expression, given that 0 < x <m/2.
@) sin (1/2 + x) (ii) cos(m/2 +x) (iii) tan(3n/2 + x)
(iv) cot(2m-x) (v) sin{m + x) (vi) cos(2m +x)
Solution: (i) (/2 + x) is in the second quadrant, so sin (1/2 + x) = cosx
(i) (W2 +x) is in the second gquadrant, so cos(1t/2 +x) = —sinx
(iii) (3m/2 + x) is in the fourth quadrant, so tan(3®/2 + x) = —cotx
(iv) (2m-x) is in the fourth quadrant, so cot(21 - x) = —sinx
(v)  (m+ x) is in the third quadrant, so sin(w+ x) = —cotx
(vi) (2m + x) is in the first quadrant, so cos(2T + X} = cosx
cos (90°+x)+ 5in (270°—x ) + sin(180°—x)
cos(—x) - cos(360°—x)+ sin(90°+x )

cos(90°+x)+ 5in(270°—x) + 5in(180°-x)
cos(—x) —cos(360°—x) + sin (90°+x)
_ —sinx — cosx + sinx _T6os% _
CcOSX—CoSX+cosx COSX
Example 6: If a, B, y are the angles of A ABC. Prove that
| i) tana + tanf + tany = tana tanftany
i) tan® tanb+tan? tanX+tan)
! 2 2 2 2
Solution:Asa, B, v are the angles of AABC ~a + B +y = 180°

i) a+B=180"-vy

Example 5: Simplify

Solution:

tan = = -1
2

tano + tanf
tan (c + B) = tan (180° - => ———————=tan
(o + B) = tan ( Y) e
=> tana + tanp = —tany + taha tanf tany

- tana + tanp + tany = tana tanf tany

ii Asa+B+y=1800=2 +B+T

ii) sa+p+y 5 it
SoE+-E=90°—l tan( B tan[QO“ Y]
272 2 2




2l - h_?wﬂu‘;lf -—i'nfiﬂf(f -M-J

[ B R
-

2
1—tan® tan B 2“”"::: 2o 124 e 2501 2 Wadllhds <25 v 2
rarzﬁtan£+tan£tanz+tanztan£=l
2 2 2["a2 259162
10.2.3 Writing a siné + bcos ¢ in the form rsin( 8+ ¢) where a = rcos ¢
and b=rsin ¢ A
Writing a sin@+ bcos @in the Form rsin{ 6+¢). P(a.b)

Let P(a, b) be a coordinate point in the plane and let &
be the angle with initial side x-axis and terminat side

the ray OP as shown in Figure 10.2.

B
.

Figure 10.2

HE
We can express a sin@ + b cos @ in the form r sin( eiz-;o)

where r = Ja2+57 and ¢ is given by the equations rcos¢ = a and rsing = b.
The method is explained through the following example.

Example 7: Express 5sin@ + 12cos 8 in the form rsin (8+¢), where the terminal
side of the angle of measure ¢ is in the 1st quadrant.

Solation: Identifying 5sin® + 12cos @ with r sin (8+¢) gives
5sin@ + 12 cos @ = rcos ¢ siné + rsingcosd (1)

50 5=rcos¢ and 12 =rsing
r=JJa+b? = (G5P+(12F = J25+144 = 169

and rcos¢ = 5 = 13cosg =35 = cos¢ =

rsing = 12 = 13sing =12 = sin¢=ﬁ.
Thus, from (1) we get

5sin@ + 12 cos 8= 13(%-sin 8+-:—§c058)

lS(sin8%+ cosﬂ%)= r (sin #cos ¢ + cos &sin @)

12

rsin (8+¢) wheresing = e

. cos¢-——3— and r= 13
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1 Write each of the following as a trigonometric function of a single angle.
sin37° cos 22° +cos 37° sin 22° (ii) cos83° cos 53° + sin 837 sin 53"

cos19° cos 5% —sin19°sin 5° (iv)sin 40° cos15° —cos 40° sin15°
tan 20° + tan 32° ., tan35° —tan12°

E (vi)
1-tan 20° tan 32 1+tan35° tan12°

2 Evaluate each of the following exactly.

(i) sinl% (ii) tan75° (iii) tan105° (iv)tanfl’—’z"- (v) cos15® nﬂsin%

3. Ifsinu=% anﬁsinv=%anduandvarebetween0andg—,cvaluate
each of the following exactly.

(iycos(u+v)  (iijtan(u—v) sin{u—v) cos(u—v)

4 1fsina=-§ and cos =-%, 2 in Quadrant L and § in Quadrant IL,
find the exact value of:
(1) sin (a—#) ii) cos (a+28) tan (a+8)

5 Iftana:%,secﬂ: -lga,andneiﬁlerthcterminalideoftheangleof

measure a nor f in the first quadrant, then find:
sin(a+p) (i) cos(a+p) (i) tan(a+p)
6. Show that:
2 &

cosa=2cos’E —1=1-2sin? =
2 2

) sin(a+f)sin(a—p)=cos’ B -cos’ a

= _ cotacotf—-1 sin(@+f) _
7. Show that: (i) cot (a+8) = el e | tan o+ tan S
A x = cos#+sind X _ o= I—tané
8. Prove that: (i) tan ( 7 +8) e T tan ( 7 a) aap
n(a+f) _ tan’a—tan’ B 1-tanftang _ cos(6+¢)
cot(@-f)  1-tan’atan’f 1+tanftang cos(6—9¢)
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0.  Provethatt ——— 4227 _ sin56

sec48 cosecdd
sin(lSO“—a)cps(Z‘?O‘f%d}'_l

10. Show that: - =
- sin (180° + &x)cos (270° + a)
L1, Ifa, B, yare the angles of a triangle ABC, show that
coi3+cot'—ﬂ¥ +cot L =cotZ cor 2 £ cotL
2 2 2 2

12. Ha+ B+y=180°, show that cotacotﬂ+cotﬁcoty+cot'ycota —113
13.  Express each of the following in the form r sin (6-+¢) whergtemnnal ray
' of 6 and ¢ are in the first quadrant. i
() 4sin@+3coss. (i1 15sind+8coss.
(itiy 2sin @ —5cosé. (iv) siz;gg- cosé.

axl = - T - i il

10.3 Double, Half and Triple Angle Identities

In this section we derive formulae/identities for sin2 @, cos2 8 and tan2 @

for sin --Iz~= g, cns-;-— & and tan %9 and for sin3 8, cos3 # and tan3 4 called

double angle, half angle and triple angle formulae respectively.

10.3.1 Double Angle Identities
We know that. sin (e+ 8)=sinacos S+ cosasin g (1)

and cos(a+p8)=cosacosfS-sinasinj (2) Putting f=a in (1).
sin (e+a)=sinacosa +cosa sina
sin 2e = 2 sinacos 2 @3)

Now putting f=a in (2)
cos (a+a) =cosacosa —sinasina

cos2a =cos’ a —sin’ a @)
Puttingcos’ @ =1 -sin’ @ in(4) (- sin’a +cos’a = D

cos2a=1-sin*a -sin*a

cos2a=1-2sin’ a 5)




Now putting sin> @ =1 ~cos® a in (4)

cos2a =cos’ @ — (1 —cos® a)

cos2a =cos® —1+cos’ a

cos2a =2cos’a —1 (6)
We also kn t tan - tanarianf Putting j =
e also know tha (a+f) T tting A | a
tan (@+a) = SMEHENE
l-tan or.tan
2tanax
tan2a =
%= tanta )

Example 8: Given that tan8= —%and @ is in the quadrant 11, find each of the

following.
i) cos 28 i) cos 28
jii) tan 26 iv)  The quadrant in which 28 lies

Soultion: By drawing a refernce triangle as shown,

we find that
. 3 4 8.2
smG--g And cos@=—
Thus we have the following. 3 \
: -4 x
) sin29=2sinecos9=2-?’-.[-ij=—ﬁ
S5U 5 25 !
Figure 10.3
| aY (3 16 9 7
i 280 =cos’@-sin’f=|-=| ~|=| =—=~—==C
ii) cos cos sin [ S) (5) 25iia5505
) -
i)  tan2g=—20 _ A4/ 2 . 316 24
 l-tan’@ (3 -2 27 12"
4 16
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: 10| Trigopometric ident

Note that tan2 & could have been found more easily in this case simply as
following:

iv) Since sin2 & is negative and cos2 @ is positive, we know that 2 & is in
quadrant IV.

103.2 Half Angle Identities

Wehave = cos2a=1-2sin*a= 2sina=1-cos2a
i —cos2
= sin*a= C(;s =

A I~cos2or
VT T ) ®

Now putting & = g in (8).

€)

If g lies in the first or second quadrant then we will write the identity (9)

1~cosé#
2

with the positive sign i.e. sin g =

If -g lies in the 3rd or 4th quadrant, we will write the identity (9) with the

negative sign i.e.

AT
Also we know that

cos2a=2cos’a—1 = 2cos’la=1+cos2a

= cosla= 1+c;sZa =  cosa =i1’~m%2“ ! ~ Putting a = g




. 8

sin—
From (9) and (10), we have tan£= 2.+ /l—cosa
2 2 1+cosé@

cos

O e | an
. 2 Nl+cos@

Example 9: Find tan (7/8} exactly.

Solution: [ x - 1
Bz _ | V2-1 =J«/'z'(\l'z-l) _|2-V2
L VV2+1 W22+ V2+2

tanZ = tan| £
8

2

_[2=v2 2-V2 _ [4-2{2-22+2 =J6—4J5 sr5h
V2442 2-42 4-2 2

The identities that we have developed are also useful for simplifying

trigonometric expressions. )

Example 10: Simplify each of the following.

sin xcos x .2 X
a) ———— b) 25m25+cosx

—cos2x
2

sinxcosx 2 sinxcosx 2sinxcosx
Solution: a) 1 =— =

~cos2x 2 lc:os 2x cos 2
2 2
_Sin2x _ tan2x  (usingsin2x=2sin xcos x)
cos 2x

b) 2sinz—'£+cosx=2(1-C°sx)+cosx usingsin-{zi‘}l_cosx, or sin:£=l—cosx
2 2 2 2 2 Y

=]—-cosx+cosx=1.

)
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10.3.3. Triple Angle Identities
We have sin3a=sin 2a+a)=sin2acosa + cos2asina
= 2sinacosacosa+{1-2sin%a )sina (By (3) and (5) )
= 2sinacos?a + sina— 2sin*a
=2sina(l —sin?*a) + sina~2sinda (- sin® + costa= 1)
= 2sina - 2sin*a + sina - 2sin*a = 3sina — 4sina
< sinda=3sina - 4sina (12)
cosda=cos La+a)
=cos2acosa—sin2asina
={2cos?a— 1) cosa —2sinacosasina (by (3) and (6) )
= 2cos*a— cosa — 2sintacosa
=2co083a—-cosa -2 (1 ~costa)cose (- sin® + cos?a=1)

=2cos*a —cosa —~2cosa + 2cosa=4cosda - 3cosa

. cos3a=4cosa - 3cosa RN (13)
2‘t::1nt:lr i
tand e =tan Qa+a)=_2N2EtEna _ L= tan’a By (7))
I-tan2ataner LA o
I —tan2¢r

2 tan @ + tan (1 - tan’ &)

I 1—tan2a _tane~-tan’ @
l-tan’ @ —2tan’ @ 1-3tan2e
1-tan 2cx
Q™ ="y
. tan3q= Juma-tn’a (14)

=F et sin2x cos2x
Example 11: Prove the identity —— =SEC X.
sinx cosx

sin2x cos2x _ 2sinxcosx cos’ x—sin’x

Solution: - -
sinx cosx sinx cos X

using double —)

angle idnetities




cos? x—sin® x

=2co8 x ——m— (simplifying)
cos x
2 82 — 2 2
o 2c08 x—cos XHSM X (1king LCM and simplifying)
cos x
cos’x+sinx 1
= = =S§ecx

Cosx CosXx

We started with the left side and obtained the right side, so the proof is complete.
Example 12: Prove the identity
sin’x tan’x =tan® x—sin’ x.
Solution: For this proof, we are going to work with each side separately.
We try to obtain the same expression on each side.

. 2 . 4
. . sin®x) sin‘x
sin’x tan’x =sin® x — | = §))
cos’x) cos’x
.2 _ .
2 .a__SIN°X ., sin x
tan? x—sin® x=——-—sin*x ctanx=
cos® x cosx
=2 2 2
sin® x—sin® xcos® x i
= 3 (Taking LCM)
cos® x
sin’ x{1—cos x) .
= ~3 (Factoring)
cos’ x
sin® xsin® x
=2————= (Recalling the identity I—cos? x=sin’x)
cos’ x _
. 4
sin' x
L - @)
cos’ x

We have obtained the same expression from each side, so the proof is complete.
Example 13: Find the exact value of cos 105°.

Solution: Because 105° =%(210°) we can find cos 105° by using the half-angle

identity for cos a/2 with a=210°. The angle a/2=105°lies in Quadrant I, and the
cosine function is negative in Quadrant II. Thus cos 105°< 0, and we must select

r
Mathematics-XI #&{i]!



correct resuit.

c0s105° =— ’l + c032]0=_ iy 2-+3
2 4
Example 14: Show that,
sin8=3_Lcos20+ Leosad
g R 2 8
Solution: L.H.S =sin% = (sin%)?
2 \
_ [1-=cos28 o ein? o 1—cos28
= ( 5 J (- sin” 8= 2 )
. 1-2cos28+cos?28 =_1_ [1—2ICOS 2 84¢05220]
4 4o
- -}4- [1-2cos 26+ ‘*cgs‘“’] (~ c0s220= ‘*";"49)

[3—-4cos260+cosdp]

1 [2 —4 cos2 @+1+cos48 ] 1)

4 2 8
3 [ 3 1 |
=1 —c0529+—cos4 == ——cos28 + ~cos 49=R.H.S.
8§ 8 g2 . 8 RS
- ; .
-sﬁf 8= E---lcos-215!-l-—'—cos4l§'
’n} 8 2 8

Example 15: Prove the following identities.
2tan @

i) sin280=————

(@) si 1+tan*@

2tan@ _, tanf

1+tan’@ ~ sec’d

(ii) sin 48 = 8sin fcos’ §—4sin Hcos

Solution: () RH.S = (-tan’ a +1=sec’ a)

= 2.tan G cos’ § (' cosa= )

s€ca
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sin @

=2. 0s> @

coséd

=2sinfcos@
=5in 260
(ii) sin 46 =8sin @ cos® @—4sin Gcos §
L.H.S =sin46 =sin[ 2(26) |
=2sin28cos28 (Use sin2a=2sinacosa, with a =28)
= 2(2sin fcos §)(2cos’ §—1) = 4sin Hcos B(2cos’ 6-1)
=8sin@cos* @—4sinfcosd =R.H.S

5 EXERCISE 10.2

" 1. Find the values of sin 28, cos28 and tan 28, given tand =_%, 8in quadrant II.
2, If sin6=% and terminal ray of @ is in the second quadrant, then find |
(i)  sin2@ (i) cos28 (i)  tan28 |

3. Ifsing =§ and terminal ray of @ is in the second quadrant, then find I

(i) sin2 8 (ii) cosg

4 Ifcos 9=—% and terminal ray of ¢ is in 3rd quadrant, then ﬁnd_sing. |

5. Use double angle identities to evaluate exactly.
A . 27 - 2
sin— CO5—
@ - (i) :

6. Use the half-angle identities to evaluate exactly.

(i) cosl5’ (i) tan67.5° (i) sind12.5°
(iv) COS% (v) tant 75° (vi) Sin?—;’-

Mathematics-X1 4
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7. Prove the following identities:

(1] D2
i cos' @—sin*§=—L_ i) tan-+cot—=—
M sec28 (i 2 2 sin®
(iif) i:—"’i—g = cot’® (iv) cosec2—cot20 = tan
oS
sin3,8__cos3ﬂ= . sin3f# _ cos3é8
(v) pEay cos B 2 {vi] = + e 200t29
30 cin? .
(wid cos’0 s?nB___Z-i-stB i) 200'339 2 cos gy oo
cos0—sinf 2 1—sin &
1 1
ix) cot28=—|cotf@———o0
() cot29=3 o0
®) s1na+c¢-)sa + sma-_-ct.)sa Aot
cosa—sine cosa+sina
(xi) tang-: e (Xis) m:mﬂmzﬁ
2 l+cosax 14cos B 2
2 1-tan? &
(i) coste. “mti=cos1] iy el DUS O
2 2—2co0s0 1+tan’ 7

-

(xv) sin20 -4 sin’8 cos@ = sin20 cos20

8. Write cos'0 in terms of the first power of one or more cosine functions.
9. Prove the following identities: 1—tan228
(i) sin4d =8sin 6 cos’ @—4sinfcosd (i) cot48="7@n2g
(ii) | cofag = ot 8=3catd f=3c0to
3cot” 0-1

10.4 Sum, Difference and Product of sine and cosine
10.4.1 Converting Product to Sums or Differences

We know that

sin (oi+ ) = sin o. cos § + cosa. sin (1)
and  sin (0 f8) = sin o cos # — coso. sin (2)

Adding (1) and (2) we get

-: =4 .:5"_.-- : - h‘. '-I -:- :" k13 L Mathematlcs-XI



Unit 10| Trigonometric Identities of Sum And Difference of Angles
sin {0+ B) + sin (0~ #) = 2 sinocos §
-~ 2 sinacos B = sin (o+ 8) + sin (0—5) 3)
Now Subtracting (2) from (1)
sin (0t+ B) — sin (0~ 8) = 2 cosa sin

=2 cosa sin # = sin (0+ ) — sin (0— ) )
We also know that;

cos (a+ A) = cosocos f — sinasin f (5)
and cos (0—/8) = cosocos § + sinasin (6)

Adding (5) and (6) we have, '

.2 cosacos 8 = cos (0+ B) + cos (o~ 5) (7)

Subtracting (6) from (5) we get,
-2 sinasin B = cos (0+ #) — cos (00— 5)
. 2sina sin # = cos (0—8) — cos (0+ f) (8)
So, by converting products into sums or differences we get the following four

identities:
2 sinocos B = sin (o+ 8) + sin (0— 8)

2 coso. sin # = sin {0+ 8) — sin (-~ 5)
2 cosocos = cos (0+ A) + cos (0—5)
2 sinosin B = cos (0—8) — cos (o+ 8)
These identities are usually called the Product-to—Sum formulae.

Example 16: Write the product 2 sin 5@ cos 38 as a sum or difference of sine

and cosine.
Solution: Using the identity 2 sinocos £ = sin (0i+ 8) + sin (a—fF)

We have,
2sin58cos3 8 =s5in (56 +38) +s5in (56-38)=5in 88 +5in 28

Example 17: Express sinl0#cos 44 as a sum or difference.
Solution: Using the identity 2 sinocos # = sin (o B) + sin (o — B)
We have, sinocos 8 = -;- [sin (& + B) + sin (o~ 5)]

sinl0@cos 40 = % [sin (108 + 46) + sin (108 — 468)]= % (sin 14 8 +5sin 68)

e T
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Example 18: Write the product 2 cos 45° cos 15° as a sum or difference.
Solution: Using the identity 2 cosoicos £ = cos (0+ ) + cos (0— )

We have,
2 cos 45° cos 15° = cos (45°+15°) + cos (45° — 15°)
= cos 60° + cos 30°

10.4.2 Converting Sums or Differences to Products

leta+f =6 .......... (N
U=-pf=¢ ......... (2)

Adding (1) and (2), we have

(s el

| 2

Subtracting (2) from (1), we have

VAT
VEShias

Substituting o0 = f'—;-‘?- and g = % in the four identities of section 10.4.1,we get

e St te
Csindsing=25in 20 cos 20
. . 2 2
sin@sing=2cos L sin __9;¢ |

Cos qucosgﬁa’lcos-g:—q.cosi;ﬁ' |
' s

ol 4o G
2SN 23

| cos B cosg=--2sin

These identities are usually called the sum~to~product formulae.
Example 19: Convert the sum sin16° + sin12° into product.

Solution: We know that, sin 0 + sin ¢ = 2sin -fizt-?- cosf’%E

f




. N = bl Trlarni -~ I o WA ~ e e
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sin 16° + sin 12° =2 sin 16042"'20 cos 160;29 =2 sin _8.:. cos—ﬂ
= 2 sin 14° cos 4°
Example 20: Express cos46 — cos20 as a product.
Solution: We have cos @ —-cos ¢ =-2sin —= 9+¢ sin?
- cosdB—cos20  =-2sin 20220520 ‘2‘2"
=-2 sin -ﬁfsm—zg = -2 sin 36 sin®
_ 2 2
Example 21: Show that cos@=cosf . _tan L (a-p)
sina+sin § 2
: E”_ﬁ n&= B _gnoh
Solution: LH.S= S59=sh _ i 2 Sl P AR
sina+sin 4 Z/m --—cos ﬁ" i a-f 2

-2
=—tan — (a—ﬂ) R.HS

Example 22: Show that sin 58 + 2 sin 38 +sin& =4 sin 36cos g

Solution:
LHS=sin58 +25sin38 +sin@ =(sin 56 +sin38) + (sin 36 +sin8)

= 23in(59+39)cos(50—30) + 25in[39+3)cos(39_8)
2 2 2 2

-281[1-8-22005% + 2 sin -42—9c052—2—=23m 48cos@ +2sin28cosé

=2 cos# (sin 46 +sin20) =2 cosé [2Sin(49;29)c05(49—29ﬂ

2

=2 cos@ (2sin 36cos6) =4 sin 3 geos’ & =R.H.S.

Example 23: Show that (sin 36 +sin & )( cos@+cosé J Bl
: sin38-sin 8 J\ cos36—-cosé

Solution: .
sin 36 +sin 6)(c0s3€+c056] _(ZSin 26cos 8)( 2cos 26¢cos 8 J

sin38@—sin @ /\ cos36—cos@ | 25in @cos 268 J\ —2sin28sin &

Lis=(
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2sin 30409 cos = 3 2cos 36:+.6 €os 39_—?
., 2 2 2 2 J)|_ cos’@_
0+8) . (30-6 . {36+ a) . (36-6 sin? @
2cos] - sin 2sin sin :
2 2 2 2

Example 24: Show that cos20® cos40° cos80° = 1/8

Solution;
L.H.S. = c0s20° cos40° cos80° = Y44 c0s20” cosd0® cos80°]

=1 [(2 cos40° c0s20?) 2 cos 80%) = % [(cos60° + cos20%) 2 cos 807

=Y [(1/2 + c0s20% 2 cos 80°%] =¥ [cos80° + 2c0s80° cos 20°]

= V4 [cos80° + cos100° + cos 60°]= ¥ [ cos80° + cos(180°— 80° ) + cos 60° |
= Y [cos 80°—cos80° + 4] cos (180% 8) = — cosB

=%[172]= 1/8 =R.H.S

EXERCISE10/3 | ] | _

& Express the following products as sums or differences.

—cot? @,

(1) 2sin 6xsin x (it) sin 55° cos123°

. A+B ___A-B . P+Q _ P-Q
e B! e S S

{iii}  sin > cosl > {iv cOs 2 COs 3

2. Convert the following sums or differences to products:
(i)  sin37 +sin43” (i)  co0s36° —cos82”

P3O cin £22 (v} cos2t8 | cosA=B

i) . sin
e 2 2 2 2

3 Prove the fofldwing.

i) cos75°+ cosl5° o J—

7 i) sin135% - cos120° c34282

sin75° - sin15° sin135° +cos120°
4. . Prove the following identities:
0 sin@+sin9a _ e {ii}c?sﬁ+c?s3ﬂ+c.os-_5ﬂ= cot 3.
cos @ +cos 9 sin #+sin3f+sin5S8

(iti) sin26+sin 46+ sin 60 = 4 cos &#cos 20sin 36
(iv) sin58 +sin® + 2 sin3 =4 sin 38cos’?
(v) sin36@ +sin5@ +sin7@ + sin 99 = 4 cosé sin 6 cos 29
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Unithm‘l- Trigonometric Identities o
(vi)cos 8 +cos2 g +cos5f=cos2f (1+2 cos 3 B)

5 Provethat (i cos20%cos40° cos60°cos80” = 1—16_
1

(ii1) sin10° sin30° sin50° sin70° = o

L OA T 50
9 9 3 9 16

gl ~ REVIEW EXERCISE 10

Choose the correct option
cos50° 50 cos9® 10/— sin 50° 50'sin9” 10’ =
St | B
0 5 (©)1 (d) 5
If tan15° = 2—+/3 , then the value of cot? 75° is
7+3 7-243 (c)7—4+3 (d) 7+43
Iftan (o + B)=1/2 and tan a = 1/3, then tanf =
1/6 177 Pl - (d) 7/6
sinBcos(90° — 8) + cosO sin(90° — 8) =
~1 2 (c)0 @1
Simplified expression of (secO + tan@) (1 — sin@) is
(a) sin’@ cos’0 (c)tan’0 (d)cos @
sin| x—— |=?
2
sinx —sinx (c)cosx (d)—cosx

A point is in Quadrant-IIl and on the unit circle. If its x-coordinate is—-%—.
what is the y-coordinate of the point?
3/5 -3/5 (c)=215 (d)5/3
Which of the following is an identity?
sin (a) cos (a) = (1/2) sin(2a) (b) sina + cosa=1
sin(—a)=sin a (d) tana = cosa / sina

TheT
i

2sin@sin20  _i.n06tang sin10g—sin4a _ cos7a
cos@+cos30 = sinda+sin2a cosa
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&

7 sinBtanE
4. sin’= =— 2
2 2

5. tan@- tang=s_ec6—l

6. cos40 =1—8sin’ 0 cos?6

- 7. sinbxsin x+ cos4xcos3x =cos3xcos 1x

8. Provethat sin(7-—0 )sin(F+ 9):%— cos24

9. Prove that i)

sin® ( m+ 9)tan(-+ B)
e —cose
(27

cot? (——- 8) cos®( m~ 0)cosec

cos(90°+9)sec(-9)ran(180° )
sec(360°~6)sin{180°+8) cor 90" 8)

LG

Real Life Applications of Trigonometry
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Atter reading this Uil the students will be abie to:

Solve right angled triangle when measures of
e two sides are given,
» one side and one angle are given.

Define an oblique triangle and prove
e the law of cosines,

(W) ==i| 722 (el (@) (== ) [¥a)

e the law of sines,
s the law of tangents, and deduce respective half angle formulae.

X > M

Apply above laws to solve oblique triangles.

Derive the formulae to find the area of a triangle in terms of the
measures of

» two sides and their included angle,

=
<

(] ped ==

« one side and two angles,

s three sides (Hero's formula)
Define circum-circle, in-circle and escribed-circle.
Derive the formulae to find

s circum-radius,

nm=Z=OoON—cCO

e in-radius,
o escribed-radii, and apply them to deduce different identities.

Mathemeatics-N1
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11.1 Introduction

Trigonometry has an enormous variety of application. It is used extensively
in a number of academic fields, primarily mathematics, science and engineering.

Trigonometry, in ancient times, was often used in the measurement of heights
and distances of objects which could not be otherwise measured. For example,
trigonometry was used to find the distance of stars from the earth. Even today, in
spite of more accurate methods being available, trigonometry is often used for
making quick and simple calculations regarding heights and distance of far-off
objects.

One of the important uses of trigonometry is solving iriangles. Every triangle
has three sides and three angles, which are called the elements (or parts) of the
triangle. We say that a triangle is solved when all six elements are known and
listed. Typically three elements, in which one is side, will be given and it will
be our task to find the other three elements using trigonometric laws and
definitions,

As shown in figure !1.1 we use standard lettering for naming the sides and
angles of a right triangle, side a is opposite to angle A, side b is opposite to angle
B, where a and b are the legs, and side c, the hypotenuse, is opposite to angle C,
the right angle. :

A triangle is usually labeled as shown in figure 11.

Figure 11.1

The vertices are labeled A, B, C with sides opposite to these vertices are
denoted by a,b,c respectively and the measure of three angles are usually denoted
by a, B and vy respectively.

We begin with, using the trigonometric functions to solve right angled
triangles. Later we will learn how to solve triangles that are not necessarily right

angled triangles. We will also derive formulae for finding the areas of such
triangles.




Unit 1 | Application of ‘Trizenomeiry

11.1.1 Solution of Right Angled Triangles B

We can solve a right angled triangle provided that either measure of
(i) two sides are given or (i) one acute angle and B
one side are given. We consider the cases as follows: c=17
Case-I: When measure of two sides are given 253
Example 1: Solve the right angled triangle ABC,
in which a = 15, ¢ = 17 and y = 90°. y
lution: From fi 11.2,
Solution rom figure we have A o L__] %
Le e Lissss 2 Figure 11.2
c 17
= a = sin~'(0.882) = 61.89° Note
since = 90° -
- ;;:9‘;,,_0‘ The side b can also be
—00°—61.80° = 28.11° found by using
B , ) ‘Pythagorean Theorem
Now cosa=— c?=a?+ b%or
[
b2=c?—a?= 177 - (5
= b = ccosex =17 cos(61.89°) tl: . ba— 8 Gt
= 17(0471) SO il
= §
Case-1I:  When measure of one dngle and one side are given
Example 2: Solve the right angled triangle ABC, C
in which b = 12, @=70"and Y= 90
Solution: From figure 11.3, we have
L
tan70’ = Th c
or  a=12tan70° a
=12 (2.747)
= 3297 ft. 70°
To find the length c of the ladder we have A B
12 12 ft
70 =—
cos70 c Figure 11.3
or ¢ =12sec70°
=12 (2.92)
=35.088 ft.

Example 3: The angle of elevation of a tree from a point on the ground 42m from
its base is 33 . Find the height of the tree?
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Solution: Let the angle of elevation = 6
and height of the tree =h

h : i
Then tan 8 = pio = tan33° = %
= h = 42 tan 33° 93¢
= 27.28 42m
The tree is 27m tall. Figure 11.4

Example 4: From point B, the top of a light house 120 ft above the sea, the angle
of depression of a boat at point A is 5°. How far is it from the light house to the
boat?

Solution: Since the angle of depression B

is the acute angle formed by the line of sight 0, “"‘5\_
and the horizontal line passing through the e A\
position of sighting. Figure 11.5 indicates the % 7 .
situation. The angle A must also be 5° in Figure 11.5
measure. We have

b s

cot A-v]-ﬁ or cot 59 = 120 __,.»-'D
= b = 120 (11.43) = 1372 ft, approx. g
Example 5: From the two successive AL .
positions on a straight road 1000 meter e e h
apart, a man observes that the angle of ] >

elevation of the top of a building directly 5122100 _“42°35° A
ahead of him is 12°10’ and 42°35’. How A  1000m B < S
high is the building? Figure'l1:6
Solution: Let A and B be the two successive positions of a man on the road

such that | 48| = 1000m. CD denote the height h of the building and let BC =x

In AACD wehave tan 12°10° =<2 ___*_____*
AC  AB+BC x+1000
or x+ 1000 =hcot12°10" =4.6382 h (D
In ABCD we have tan 42°35 = 4
X
=x =hcotd42°35 =1.088h (2)

From (1),(2) 1.088h+ 1000= 4.6382h
= h=281.67m=282m  Now from (2) we get
x =3068 =~ 307m
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EXERCISEL1L

Solve the following right triangies.

(i) B (ii) - (iii)
6 a s 5 10
A A b
A 05 c " B
b

Solve right triangles ABC in which ¥ =90" and
(iya=14, p=28 (i) b =89, #=215 (iii) b=14,c=450

The angle of elevation of the top of a post from a point on level ground 38m
away is 33.23°. Find the height of the post.

A masjid minar 82 meters high casts a shadow 62 meters long. Find the
angle of elevation of the sun at that moment.

The angle of depression of a boat 65.7m from the base of a cliff is 28.9°.
How high is the cliff?

From the top of a cliff'52m high the angles of depression of two ships due
east of it are 36° and 24° respectively. Find the distance between the ships.

Two masts are 20m and 12m high. If the line joining their tops makes an
angle of 35° with the horizontal; find their distance apart.

The measure of the angle of elevation of a kite is 35°, The string of the
kite is 340 meters long. If the sag in the string is 10 meters, find the height
of the kite.

A parachutist is descending vertically. How far does the parachutist fall as
the angle of elevation changes from 50° to 30° which observes from a point
100m away from the feet of parachutist where he touches the ground.

An isosceles triangle has a vertical angle of 108° and a base 20 cm long.
Calculate its altitude.

Mathematics-NT Alss
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11.1.2 Oblique Triangles

If none of the angle of a triangle is right angle, the triangle is called oblique
triangle. In Figure 11.7 both triangles are oblique triangles.

i /> obtuse angle

(@) Figure 11.7 (b)

We see that an oblique triangle has either

(1) three acute angles (figure 11.7(a)) or

(i)  two acute angles and one obtuse angle (figure 11.7(b))

In the last section we solved right angled triangles, however, in this
section we will solve oblique triangles. Given three elements of a triangle we will
be asked to find the remaining three elements. Thus, we have the following
five possibilities:

When three parts of a triangle including at least one side are known, the triangle is
uniquely determined. The five cases of oblique triangles are

1. A.A.S: Given two angles and the side opposite to one of them
2. A.S.A: Given two angles and the included side

3. 5.5.A: Given two sides and the angle opposite to one of them
4. 5.A.S: Given two sides and the included angle

5. 8.5.5: Given the three sides

In case of (5.5.A) there is not always a unique solution. It is possible to have no
solution for the angle, one solution for the angle, or two solutions——an angle and
its supplement.

In order to solve the above cases of oblique triangles, we develop special
mathematical tools called the law of cosines, the law of sines the law of tangents.
(a) The Law of Cosines

In this section, we will derive the law of cosines and we use it to solve the
case 5 of oblique triangles.

o .
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Theorem (Law of Cosines) In any triangle with usual labelling
(i) a® =b* + ¢ —2bccosa A

(ii) b? =c? +a® —2cacos

(iii) c®=a’+b"—2abcosy
Proof: Case 1: All the angles are acute, a is an /
1 8
A

acute angle in figure 11.8. If his the altitude of
vertex B, then in ABCD, we have, -
at=h+(b-x)° (N Figure 11.8
In ABAD we have
cosaxr = i
[
S X=cCos . (2)
and  c’=xt+H 3)
Put (2) and (3) in (1)

a® = (2 - x})+ (B = 2bx+x7)

= b +¢*-2bccosax

fx

i - —
Case2: One angle is obtuse. a is obtuse here " o gl ha is obtuse 3
In ABCD a2=h2+(b+x)2 Figure 11.9
giving a? =h*+b% + X7 +2bx (1)
InABAD,  cos(80°-a)= =
- x=C COS(180°-a)=~C COs& (2)
~and ct=ht+x? 3)

Put (2) and (3) into (1)
a® =(c2—x)y+b* +x2+2b(x) bl +ct+2b(—C COS @ )=b*+c>=2bccos u
In both the triangles, we obtained a* =5’ +¢% —2bc cosa.

By considering angles B and C in a similar manner, we can prove that

b? =a® +c*—2accos f§

¢t =a® +b> —2abcosy

By rearranging the formula we can express the cosine of the angles in terms of
three lengths sides of the triangle.
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Did You Know

{

b +c?-a’ S.85.S. and S.A.S.
it possibilities could be
2, 02 p2 tackled by using cosine

cos = S law. However in S.A.S.,
; ch ; where two sides and
cosy=2 +h'—c included angle is given,
2ab it is necessary that the

given angle must be
less than 180°,

Example 6: (SSS): What is the smallest angle of a triangle whose sides measure
25, 18 and 21f1?

Solution: If ¥ represent the smallest angle, then c (the side opposite) ¥must be
a’+bi=c? (257 +(21)%-(18)’
2ab 202521

= y=cos (0.707) = 45°
Example 7: (8.A.S.): Find ¢ where a = 52, b = 28.3, 7= 38.5°
Solution: ¥ is the angle included between @ and b.
c? =a*+b2—2abcos ¥
=(52)% +(28.3)> - 2(52)(28.3)cos 38.5°
=c’~ 918.355
= ¢ ~ 30.30 unit

the smallest side, soc = 18. Then cosy= = 0.707

Example 8: A body is acted upon by the forces 10N and 20N making an angle
25°35" with each other. Find the magnitude of the resultant of the forces.

Solution:
C
;,},ff”f/
2(1!'5,/'
iy
- 2 o ’
= P25°35 oyt =
A 10N B

Figure 11.10 (a)

Mathemation-X 1
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Figure 11.10 (b)

The resultant R is the diagonal of parallelogram ABCD. Hence ‘
R? = (10)% +(20)% —2x10% 20cos(180°~ 25° 35)

=860.78 N> >R =293 N. ‘
Example 9: An equilateral triangle is inscribed in a circle of radius Scm.
Find the perimeter of the triangle. AL
Solution: Let O be the centre of the circle. Join O iy
with vertices B and C.
In the equilateral triangle ABC, we have

£BOC = LAOC = ZAOB =%(350°) =120°

03[ {315

Using cosine law ol
|5c[* = |oB[ +|oc[ -2x|0B] oC|cos 2B0C Figure 11.11

=52 452 -2x5%5c0s120°

=\[ﬁ .Each side is J75 cm.

Hence perimeter of AABC = V75 +475+475 =375 = 153em

) The Law of sines
In the last section we discussed the two possibilities of solving oblique
triangles SSS, SAS. !

In this section we will consider the fourth case ASA or AAS which is one ;
case because knowing any two angles and one side means knowing all the three
angles and one side. The law of cosine does not work where at least two sides are

needed. We state and prove the law of sines for this purpose.
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Theorem: In any A ABC with usual labelling
sin@ _sinfl_siny
a b c
Proof: Consider any oblique triangle as shown in figure 11.12

(i) 7 is acute (it} Yis obluse i
Figure 11.12(a) Figure 11.12(b)
Let  h=height of the triangle with base CA. Then in figure 11.12 (a)
sinez =" andsin y=%  (Solving for )
h=c sincaand h=asiny
Thus ¢ sing=asiny = Si:a=5i:7 ()

In figure 11.12 (b) h = a sin (180°~y) = asin ¥ and h=csina
Hence ¢ sina = asiny

Similarly if we draw perpendiculars from the other two vertices on opposite sides
of AABC we get

sinar _ sir; yii o)
a
and Si'; A = $in ¥ 3)
c

Combining (1), (2) and (3) we have
sing R sin . siny

a b ¢
or equivalently,
a b c

sing sinf siny

These equations give the law of sines.

! \lnll!u-m;nic{-.'ﬁ 320
| *
|
|




Example 10: For a triangle ABC, given a = 30, b=70 f =85°Find .
Solution: Using law of sine

a b
= sina=30x S“;gs =0.4269 => o =25°16'25"
Example 11: From a point A the angle of elevation of the top C of a tower is 28°.
From a second point B, which is 2200 ft closer to the base of the tower, the angle

of elevation of the top is 66°. What is the height h of the tower?

- ot 3 ZBDH(R“H
D B 2200 fi A
Figure 11.13
Solution: For AABC, AB = 2200, £ ABC = 180°-66° = 114° and £ BCA=38°.
Applying the law of sines to A ABC, we have
sin38° _ sin 28°

2200 a
Thus a = 1678 ft, approximately.
Now for A BDC, we have
oo B IR
sin 66 1678

Thus h = 1678 sin 66° = 1533 ft, approximately.

mmmdshehrSMTr!ang_les
85°

a - 7 - C
sin45®* ~ sin50° sin85°
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Example 12: Solve the triangle in which
=38, 8=121° and a=20

Solution: Since a+f8+y=180
=180 - 121° -38°=21° Use the law of sines to get b
O, S a
sin f# " sina
a.sinf sin121° .
b= = = b=20 x TS 28 approximately.
Use the law of sines again but this time using « , ¥ to get
c

s_in21°= 11,6 = 12 approximately.
sin 38°

a &
: - = ¢c=-——xsiny =20 x
;. siny  sina sina

(c) The Law of Tangents

Theorem: In any triangle ABC, show that

¥ tan%{a+ﬁ)

1
tan (F+7)
0 a+b r : (ii) b+c 4 %
@b an(a-p) 7€ un (-
2 2
lanl{y-i-a)
Gii) =2-—2
c—a m"i{?’—a)
Proof: By the law of sines in any triangle ABC
a _ b _ A

sin@ sin f Z siny =D (say) iﬁ}

We have \
a=Dsinaand b=Dsin S a \,‘
a+b=D(sin@ +sin 5) (1) \
‘a—b=D(sina -sin f) (2) .40 o

A
From (1) and (2) b
. a+b _ sina+sinf
a~b  sina-sinf
Using the formulae

Figure 11.14

sin + sin § = 2sin a;ﬂ cosgéé

[ Mathematicd-N1 4
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8 n8=F

and sin& —sin g = 2COSaT sin

2
we get

. a+f a-B ' 1
. ZsmTcos——2 <l ath _ tanz(a'-i-ﬂ)

a-b a+ﬂ a-§ a—-b 1
2cos — tan—(x — )
2 e 20 Sl
tanl(ﬁ+7) tan—l—(y+lr)
Similarly e .2 and [£X8_. 20
¢ (-7 T4 ans-a

These three relations are known as the law of tangents. Note that the
interchange of lengths a, b result in the interchange of angles  , §. Hence if

b>a then it is better to use the tangent formula in the form.

1
b+a _ mi(ﬂ+a)
A tan%(ﬂ—a)

Example 13: Use the law of tangents to solve the triangle ABC in which
a=925 c=432and g =42°30,

1
a-c _ tan-g;(a-—y)

Solution: PP 1
tan rzn(a-i- 4]

Butg +y=180°- g = 137°30.’=>'-;-(a + 7)=68°45
' 1

925-432 _ B @7

925+432 tan(68°45')

Therefore tan— (a—y) = E" x 2.5715=093=> —(a—y) =43°3 = a-y=86°6

Hence

Now a + y =137°30

a -y =866
By addition  2e=223°36
a =111°48

By subtraction 2y=51°24'
y =25°42
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To find b, we use the law of sines

b= TS
sinf  siny
Cige - 432 .
= e— = %30 =
7 sin A T sin42 673

(d) Half Angle Formulae

The half angle formulae are very useful to solve a triangle when the
measures of three sides of a triangle are given and no angle is known. These
formulae could be derived using the law of cosines.

(i) The cosine of Half the Angle in Terms of Sides

Theorem: In any triangle ABC, show that B
e 2= fSE=a B [SEER) Paa)

2 be 2 ac 8 \
cosL= |39 29 wheres =l(a+b+c) a/ \C

2 ab 2 o \

1 i
Proof: Let S= ~(@+b+c) e 3
: 20, c /D @\
Using the law of cosines S Tt A
cosa = birciSas Figure 11.15
2be

But cosa =2 coszg—l

0% 2
Hence 2cos?Z—1=, A8 2"
2 2bc
= 2 CDSZE= Mq-l .—_M
2bc 2be

The numerator being difference of two squares, can be written as
LA [® +c)+a] [(B +c)-a]
2be

Since a+b+c=28S
and b+c-a=2585-2a=2(8-a).

a _ (25)x2S -a)
B 2bc

a S(§-a) a S(S -a)
= coslm= ———0Or co§ —= % |———
2 be 2 H be

Hence 2 CDSZE




Hence fcos— = J—— (n
Similarly we can prove
B [SE=D)
2 ac
L JS(S—c)
2 ab

(If)  The sines of Half the Angle in Terms of Sides
Theorem: In any triangle ABC, show that

sinZ = ’(S—b)(S—c)
2 bc

sin£= ’(S—C)(S-a)
2 ac

sinz--"w. whereS:l(a+b+c) 4
2 ab 2

Proof: cos& = 1-2sin? %

a g
Hence 2 sin? % = l—<cosQ
=1 B +c?—a® _ a*—(b-c)? c /9 . N A
25 o Figure 11.16
_ (a—b+cXa+b—c)
- 2bc
Since a+b+c =28 .
SO a-b+c=25S-2b=2(S-b) and a+b-c=28-2c=2(S-c).

Substituting these values in the above equation

2t & 2 WA @, [ETHG
2 2bc 2 bc

Again sin Z is measure of an acute angle sin 2 is always positive.
g 3 =
Hence sin% = _(-g_—%:_if,‘:_’:'_)_ o

B r—
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Similarly

sin

and

S ‘(S-a)(S—b}
Slﬂ2 = —_ab

(iii) The Tangent of Half the Angle in Terms of the Sides

Theorem: In any triangle ABC, show that
@ _ o [S=BXS-0)

S(S—-a)
(S —-cKS —a)

—_— -

S(S-b)
(S —alS~b)

S{(S—c)

=8

5=
anf = 5
2
tan £

2

wheres=%(a+b+c}

- sinE
Proof: tan— = -
2 a
cos—
2
B o O J(§-cXS-b)/bc
2 JS(S—a)/bc
2 _ ’[S—b)(S—c)
g =) _S(S-a)
.. _é N (S-cXS—-a)
Similarly .tanl2 J——-—S{S_ 5

(S —aXS -b)
S(§ -c)

g
=
[

('{:D'\_
/’.' -\.‘\ s
I"j (3
oA . e
Figure 11.17
(by (1) and (2))
A3)

Now if we multiply and divide the right hand side of (3) by (S—-a) we get

a _ 1 [(S—a}S-bXS-c)

27 S-a)¥ S

Denoting J (& "a)('s;b)(s'c) by r, we get
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Similady a0l = 55| and |07 = 57

where S=% (a+b+c)andr=J(?—ﬂ)(S;b)(S-C) :

Example 14: Solve the triangle ABC with usual notation for its sides given that
a=75b=55andc=350

Solution:  S=L(a+bro)= % (75+ 55+ 50)

So S—a=90-75=15
S-b=90-55=35
S-c=90-50=40

Using half angle formula
cos? = [S6-a _ (20D _ 0700649
V' ke (55)(50)
= % =45°31" or a=91r2
Also cosB = JSTS —by _ |90X35 _ 99165
2 ac 75%50

= -2-:23*35’, g =47°10
Hence 7= 180°— (a +§ )= 180°— 138°12' =41°4¥

B = Th! P [EXERCISE 11.2
i. Solve the triangles with dimensions.
() a=209,b=120,c= 241 (i) a=120,b=240, = 32°

(si) @ =100°c=345,7 _564° (iv) a=245,c=438, f=112°

(vp b=16c=32 a=100"24 (vi) B =39°30,y=34°10",a =240
(vii) @ =35°, B =70 c=115 (vi)a=375, b=124, B =172°
(ixp b=125,c=23 a=38°20 (x) a=168,c=319, f =110°22'

> Find the angle of largest measure (Using half sine law).
) a=74 b=52 and c =47

sjathematics-X1
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(i) a=7, b=9 andc=17
(ili) a=2.3, b=15 andc =27
3. Solve the triangle for which length of three sides are given.(Using half cosine
law)
(i) a=9, b=7 andc=35
(ii)a=1.2, b=9 andc=10
(iii)a = 6, b=28 andc=12

4. One diagonal of a parallelogram is 20cm long and at one end forms angles 20°
and 40° with the sides of the parallelogram. Find the length of the sides.

5. Two planes start from Karachi International Airport at the same time and fly
in directions that make an angle of 127° with each other. Their speeds are
525km/h. How far apart they are at the end of 2 hours of flying time?

6. A city block is bounded by three streets. If the measure of the sides of the
block are 285,375 and 396 meters, find the measure of the angles of the street
make with each other.

7. The diagonal of a parallelogram meets the sides at angle of 30° and 40°. If the
length of the diagonal is 30.0cm, then find the perimeter of the parallelogram.

8. Use the law of cosines to prove

(b+c+a)b+c—a)
2bc
{a-b+c)a+b—c)
2bc
1.2 Areas of Triangular Reglons 2
To find the area of a triangle ABC . :
we discuss three cases SAS, SAA and SSS b . a
separately as follow )
(a) Area of a triangle when two sides
and their included angle is given. Tt o sl
From elementary geometry we know A ¢ E
that the area of a triangle is equal to Figure 11.18

i) I1+cosex =

(ii) I-cosa =

- —

eI e
_\latllrmalicui.‘il i
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one half the product of measure of the base and measure of altitude. In figure
11.18 for the triangle ABC. Let h be the measure of altitude.

Then area A is givenby A = 5 (AB)(h)

But since AB =c and % =sin & orh=bsin &
A=%c(bsina)=%bcsina (1)

Also h can be written as %:sinﬁ orh=asing

So that A becomes, A = —(c) (asing) = —-ac sin £

Similarly by taking other sides of the triangle ABC as base
Wehave A= cabsiny

Hence the area A can be found by either formula
A=Labsiny= L acsin g = 2besin @
2 2 2

This shows that the area of a triangle is

. “One half the product of the mcasvure of two s:des and the smc; of thew o ]
‘measure of thc*angle mcluded betweemthem A,

|
- = e e e

(b) Area of a tnang_le when the measure of one side and measure of two
angles is given (SAA).

If in the formula %ac sin A of the area of a triangle one of the sides say c is not

known we can replace it from the law of sines.

We have

a b c asin

5 = — = — = cC= — 4
sing sinf  siny sina

So that the area is now given by

A = — acsin f = ia(f’ﬂz)x sin

1
2 2 sing

A= 5 sin #siny @

a

1
2 sina




Lnitll Apnplication of Trizonometrs

clsinasin f
sin ¥

e l,,sinasiny
A = —ph2 =
Similarly we have =3 sin

(c) Area of a triangle when measures of all the sides of a triangle are given.
We know that the area A is given by

1
2

Ay= -!-bcsin an= ll:lcx 2 sin £ cos % =bc sin £ cos &
2 2 2 2 2 2

Using half angle formulae
A= bc\/(s"’)(s"c) x JS(S"“) = fSG-axS-bis-o _(3)

This formula is known as Hero’s formula (alternatively known as Heron's
formula).

We now find the area of a triangle by using the above mentioned formula.
Example 15: Find the area of the A ABC where @=18. 4°,b=154ft and c =211ft.

Solutieon: A = —;—bc sin @ = 5(154)(211)(sm 18.4°) = 5128.349

To two decimal places the area is 5128.35 square feet.

Example 16: Find the area of a triangle with angles 20°, 50° and 110° if the side
opposite the 50° angle is 24 inches long.

Solution: Let a =20° g =50° y = 110°
Now b is given which is 24 inches
Hence the area A is

A = 1 52 sinasin ¥

2 sin 4
2 (24)2M = 120.83 square inches.
2 sin 50°

Example 17: Find the area of a triangle having sides of 43ft, 89ft and 120ft.

Solution: Since three sides (but none of the angies) are known, we need Hero’s
formula to find area.

Let a=43,b=89andc =120, then
S= —;-(43+89+120) =126

A = [126{126-43)(126-89)(126-120) ~ 1523.70

To two decimal places the area is 1523 square ft.

Vathe r1|.'.t!|-.T.
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Example 18: What is the vertex angel of an isosceles triangle whose equal sides
are 13ft long if the area is 50 fi°. c

Solution: Area A ABC = % ab sin ¢

/'/ by
50 = % (13)(13)(sin ¢) 4 "
i = -1-{—,9- £ / | “\,
sinc= 1o 0.5917  _ %
c = sin'(0.5917) = 36.3° S — e
=36°18 Figure 11.19

S ——— m— i m—

~ EXERCISE 11.3

s sk e e B — e B

1. Find the area of the- triangle ABC in each case

(@) a=15 b =80 y=38°
(i) b=14 c=12 a=82°
(i) a=30 B =50° y=100°
(ivy b=40 a=50° ¥= 60°
v) a=70 b=8.0 c=2.0

(vi) a=ll b=9.0 c=8.0
(vii) b=414 c =485 a=49°47
(vii)) a=32 B=47°24 y=70°16"
(ix) b=47 a=60°25 y=41°35
x) c¢=57 a=23°24 B=171°36
(xi) a=925 c =433 f=42°17
i) a=92 b=71 y=56°44

2. The area of triangle is 121.34. f @¢=32°25", f=65°65" then find ¢ and angle ¥.

3. One side of a triangular garden is 30 m. If its two corner angles are 22-;-and

1

11 12-2— , find the cost of planting the grass at the rate of Rs. 5 per square meter.

4. A new home owner has a triangular-shaped back yard. Two of the three sides

measure 53 ft and 42 ft and form an included angle of 135°. To determine the

Mathematics-Al




Unit 11| Application of Trigonomerr)

amount of fertilizer and grass seed to be purchased, the owner has to know the
area of the yard. Find the area of the yard to the nearest square foot.

11.3  Circles Connected with Triangles

11.3.1 (a) Circamcircle: A circle passing through the vertices of any triangle
is called the circumcircle. The measure of radius of this circle called
circumradius and is denoted by R. The center of this circle is called
circumcenter.

The circumcenter is the point where the right bisectors of its sides meet each
other.

(b)  Incircle: A circle drawn inside a triangle and touching its sides is called
the incircle associated with the triangle. Its radius is called inradius and its center
is called incenter.

The student knows from elementary geometry that incenter is the point at
which internal bisectors of the angles of a triangie meet each other.

(c) Escribed Circles: A circle, which touches one side of a triangle
externally, and the other two sides internally when produced is called escribed
circle or ex-circle or e-circle.

There are three such circles, touching the sides «, b and c externally. Each
circle is associated with the side of the triangle it touches externally. The measure
of the radius of the circle opposite to the vertex (touching side externally) is
denoted by rand measures of the radius of the circles opposite to the vertices B

and C are denoted by r,and r, respectively. The centres of these circles called
ex-centres are similarly denoted by I,, I,and I,.
The ex-centre I, with respect to the vertex A is the point of intersection of

the external bisectors of angles B and C and internal bisector of angle A.

| AMathematips-N1 TR
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11.3.2 (a)To find circumradius for any triangle ABC

(i) To find R, the circumradius of a triangle ABC in terms of measure of

a side and its opposite angle.
Let O be the circumcenter of the triangle ABC. Join B and O and produce it to

meet the circle at D. Join C and D.

......... A A
R AT _..--{_,-_:_;_-:.__ ___.-"' .I-.{_}:\:h :
."-f-:"'“.. "/ a P C __.-".. # / o
P Y g \
-._I_lD 3 'I.'-___.. ) P
. ; ‘# .
...... ...I { e LFE " I'h‘l-. LT — g
® (i) (iii)
Figure 11.20

Figure 11.20 (i), (ii) and (iii) depicts the cases where measure of angle & is acute,
obtuse and right angle respectively.
Now measure of BD is the diameter of circumcircle. Hence

BD =2R

mBC =a

In figure (i) m £ BDC = a<-’2?-

Because a and Z BDC are angels in the same area of circle made by chord BC.

Hence m_ﬁ% =sin ZBDC =sin @
m

So %: sin a (1)
In figure (ii) £BDC and Za are supplementary angles because they are made
~~

— N
by the same chord BC in two opposite arcs BAC and BDC.

Hence _—
mBC _ sin £ BDC=sin (n-a)
mBD

=§in o (2)

In figure (iii) a = %
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Hence in this case

mBC T - . R s
— =1=sin ==sin &1e. — =5in & 3
mBD 2 2a 3)
Hence all the three situations lead to the conclusion that
a
2R = — or R=—= .b = —
sin o 2sine 2sinf  2siny

(i) Circumradios in terms of the measurements of sides of 2 triangle
We have already proved that

2 V[(S—b){S—c) X-JS(S—a)

. R @
sina=2sin —cos— =
2 2

be bc
_ 2YS(S—aXS-b)S-c) _ 24
1 be " be
S O [N b
T 2sina | 4A

where A = [S(S-a)(S-b)S—c)
Example 19: Find the circumscribing radius for a triangle whose sides are 3,5 and 6.

Somﬁog:_ atbt+e _ 3+5+6 _ 7
=t =200 |
RE = = _3x3x6__ %0 __ % __ 3 (approx.)
SC-aG-bXS-0 41 456 2456 i
(b) To find inradius r for any triangle ABC
We shall prove o VI (5 ~a)(§ -b}S -c) . |
S i

where § = %{a + b + ¢) is the half perimeter.

Let the internal bisectors of a triangle ABC meet
at the point O which is the incenter. Join O with
vertices A, B and C. We obtain three triangles
OAB, OBC and OCA. The altitude OF, OD and
OE respectively of these triangles is a radius of
the inscribed circle. The bases of these triangles
are sides of the original triangle. Then from & - P

figure 11.21 Figure 11.21
Area A ABC = Area A AOB + Area ABOC+ Area A AOC

Wiliheniids- v
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= lar+ lbr+ lcmrw =r§
2 2 2

To obtain r the radius of inscribed circle, we divide both sides by S
= Area AABC
A
If we write A for the area of triangle ABC then
A JS(S-a)S =b)S =c)
B s
~ [(§—a)S-b)S—c)
B s
Example 20: Find the radius of the circle inscribed in a triangle whose sides are

7, 24 and 25.
Solution: We must first calculate the half perimeter S.

Hence

g dtbtc_ T+24+425 56 _ g
Then r= J(28’7)(23;824)(28—25) = J21x4x3 ~ f5=3
Example 21: Prove that in any triangle ABC r=4R sin % sin 'f sin %

g

Solution: R.H.S =4Rsin ‘; sin ey z

A

sin

_ 4abe) [(S-b)S-o) | [(S=a)S-0) J(S—a)(S ~b)
4A be y ac ab

_ 3 A1y 2 a2 = _ _

=—]—(abc) (S-a) (“‘i ’b)v(S o 1 (abc)x(s a}(§ —b)S —c)

A a“b e- A abc A
= L>< S(S-a)$S-byS—c)= _l—x& - =r
T.5A ~sa =5 "

as &= S(S-a)(S-b)XS-c).

(¢) To find the Radius of e-circle of a triangle
Let O be the e-center opposite to the vertex A as
shown in Figure 11.22

Let L,M and N be the points at which the e-circle
touches the side BC externally and touches the sides
AB, AC when produced respectively.

Then from elementary geometry OL, OM and ON
are perpendiculars to the side. 8¢ and sides AB, AC Figure 11.22
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(when produced) respectively. Join the e-center O with A, B and C.
Clearly mOL =m OM =m ON = y
Area A ABC = Area A AOB + Area A AOC - Area A BOC

1 1 1
c e+ Eb h=5an= -Zvr,(c—t-b—a)

(28 — 2a) where S =
Thus the area A of triangle ABC is

1t | = 1| —

at+b+c
2

A=rn(S—-a)orin= Sﬁa
Similarly r,= f_—b if the e-circle touches side b directly but sides a, ¢ when
produced.
The e-radius r, of escribed circle associated with vertex C is given bylr,= Sﬁc !

Example 22: Find R, r, 5, »» and r, for the triangle with measures of the sides
5,12 and 13.

Solution:

Let a=535b=12andc=13

= S (5+12+13)=15

A = JS(S-a)§~b}S=c) = V15x10x3x2 =30

__ {abc) _ 5><12><13_6

R = = 0.
4A 4x30 3
A 30
y=— SN—r=
5 15
A 30
= = —— =3
WNs—a | 15-5
V_ A 30
23S NN 5= 1200
30
= =i—=il
A= ST isoia
Example 23: Prove that for any equilateral triangle r:R:r=1:2:3
Solution: Let the measure of each side of the triangle be denoted by c.
c+c+e 3¢ )
RS = o T
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Area of the triangle is given by

3 2
= \fS(S—c = J£(3—C—cJ = Jixc— = e
22 2 8 4

R=22¢ - _¢ -5
B 43, B3
4
r:ézﬁc.-x—g-z_c_.
N 4 3¢ 2.3
V3 5
c” 2
NOW rl': A = 4 :Jgﬂ' xg.z '\’SC .
S-a 3C_C 4 c 2 -
2

Hence, r:R:r .t
T BB

¢ x\/gzcx 3:J§C><J§ l: 3—123

Example 24: Find the area of the inscribed circle of the triangle whose sides
measure 7, 8 and 9 unit.

Solution: Here S = Uitchall 12

Area of triangle with sides 7, 8 and 9.
A = JS(S—aXS-b)S—c) = J12x5x4x3 = 26.83 unir®

=A LR = 2.24 unit

hY 12
Area of inscribed circle = T r° = (3.1416)(2.24 )" = 15.76 unit®

EXERCISE 11.4

1. Compute the in- radlus (r) and circum-radius (R) of the tnangles whose
sides are given;

(i) 3,56 _ (i) 21,20,29
2. Find the area of the inscribed circle of the triangle with measures of the
sides 55m, 25m and 70m.

3. The measures of the sides of a triangle are 20, 25 and 30 decimeter. Find
the radius of the described circles '

(i) Opposite to larger side (1) Opposite to smaller side

”
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4. Show that (i) frifi =A (11) abc(sin @ +sin f +sin y) =
(iii) 72 = r§?

5. Prove that for any triangle ABC

(i) n+n+nrn—r=4R '!12"'!’2+Tzf3+f‘3q=32
i) LR
Ty T B 7 R T
6. Show that 5
i i i1 4
(i) r=stan— (i) r, =stan— Giil) P =l -
: 2 & 9 3 2

7. The sides of a triangle are in the ratio 3:7:8. The radius of the inscribed
circle is 2m. Find the sides of the triangles.

1. Choese the correct optlon
(i) Inright triangle ABC, find b lfa =2,¢=5,and r =90
(@) 7 (b) 3 () V21 (d) 29
(ii) An escalator in a department store makes an angle of 45° with the

ground. How long is the escalator if it carries people a vertical distance
of 24 feet?

(a) 122 fr L(B) 242 ft (c) 83 ft (d) 48 ft

(i1) If in an isosceles triangle, ‘a’ is the length of the base and ‘b’ the
length of one of the equal sides, then its area 1s

WA 05w O Ew O

(iv) JIf Heron's formula is used to find the area of triangle ABC having
a=3 meters,b = 5 meters, and ¢ = 6 meters, which of the following
shows the correct way to set up the formula?

@ A=7J(10){12)(13) (0 A= f(4)(2)(1) L
©A=IPPE  ©A=T@RD S |

(v) In the adjoining figure, the length of BCis
(a) 23 cm (b) 343 cm 30° A
(c) 43 em (d) 3cm B

{ i.\[:llhcnmli s-XN1I
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(vi) If the angle of depression of an object from a 75 m high tower is 30°,
then the distance of the object from the tower is

@253m (0B m  (©753m (d) 150 m

(vii) The point of Concurrency of the right bisectors of the sides of a
triangleis called
(a) In-Centre  (b) Orthocenter (c) Circumcentre (d) Centroid

(viii) With usual notations Imnn =

abc A
AN b) AZ = £
(a) (b) (c) A (d) o

2. Solve the triangles.
(i) a=0.7, c=08,4=141°30 (i) =34, b=23, c =58
(iii)a = 15.6, b =18, y=35°10° (iv)a=48, . b=32, y=57°
(v) b=35,c=37,2=23°25 (vi)a=58.4, B =37.2°y=100° |
(vii)c = 13.6, @ =30°24", g'=72°6
3 Find the measure of the smailest angle of the triangle whose sides have
lengths
(i)4.3,5.1and 6.3  (ii)3,4.2and 3.8 |
4. Find the measure of the largest angle of the triangle whose sides have lengths |
(i)2.9,3.3and4.1 (i) 6.0,8 and 9.4 ‘

5. The sides of a parallelogram are 25cm and 35cm
long and one of its angles is 36°. Find the lengths
of its diagonals.

6. A man is flying a kite. He has let out 50 m of

string, and he notices that the string makes an angle
of 60° with the ground. How high is the kite?

7. A robin on a branch 40ft up in a tree spots a worm at an angle of depression of
14°. From a branch 15ft above the robin, a crow spots the same worm at an
angle of depression of 19°. How far is each bird from the worm?

8. The angle of elevation of a building is 48° from A and 61° from B. If AB is
20 m, find the height of the building.

prTr———er )

ics-Xi




Unit 12 leph of Trigonometric and Inverse Trigonometric Functieos and Solutions of Trignometric Equations

UNIT?

Graph of Trigonometric and
Inverse Trigonometric Functions
And Solutions of Trignometric

; Equations

12 - i sin 0

B i 4 Principal | General
solution solution

After reading this wit, the studenis wall be .:ihlb i ink

Lk e

Find the domain and range of the trigonometric functions.
Define even and odd functions.
Discuss the periodicity of trigonometric functions.
Find the maximum and minimum value of a given function of the type:

s atbsind,

e a+bcos0,

* a+ bsin(cO +d),

* a+bcos(cO+d),

= the reciprocals of above, where a, b, ¢ and d are real numbers.
Recognize the shapes of the graphs of sine, cosine and tangent for all angles.
Draw the graphs of the six basic trigonometric functions within the domain
from —2x to 2m.

* Guess the graphs of sin 20, cos 26, sin 8/2,cos 0/2 etc.without actually drawing
them.

*  Dehine periodic, even/odd and translation properties of the graphs of sin@,
cos@ and tanf , i.e., sin & has
» periodic property sin(6 x+ 2x) =sin 9,
* odd property sin(— 0} =—sin 0 ,
sin (- 7)) =—siné
sin(z—6) = siné
* Deduce sin(B + 2kn) =sin § where k is an integer.

* Solve tnigonometric equations of the type sin0 =k ,cos@ =k and tan 0 =k ,
using periodic, evenfodd and translation properties.

2 | 74 (mal (@) (= =]| (¥

* translation property {
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Unit 12 !Grnph of Trigonometric and Inverse Trigonometric Functions and Selutions of Trignomotric Equations

» Solve graphically the trigonometric equations of the type:
» sin6=0/2,
s cos8=06,
» tan =20 when -/2<6<n/2
s Define the inverse trigonometric functions and their domain and range.

» Find domains and ranges of
o principal trigonometric functions,
= inverse trigonometric functions.
Draw the graphs of inverse trigonometric functions.
Prove the addition and subtraction formulae of inverse trigonometric functions.
Apply addition and subtraction formulae of inverse trigonometric functions

to verify related identities.

« Solve trigonometric equations and check their roots by substitution in the
given trigonometric equations so as to discard extraneous roots.

e Use the periods of trigonometric functions to find the solution of general
trigonometric equations.

12 Introduction

Trigonometric functions are usually defined either with the help of a unit
circle or right angled triangles. We will also study their properties with a special
emphasis on their graphs. Rest of the unit is concerned with inverse trigonometric
functions and solutions of trigonometric equations.

12.1 Trigonometric functions

We know that the domain of the function defined by the equation y=f (x)
is the set of all those values of x for which the function attains finite definite
values, and the range is the set of all those values which y attains. So far the
functions we have studied all had subsets of real numbers as their domain and
range. But the domains of trigonometric functions are the set of angles, rather
than real numbers. We can however, make the domains of the trigonometric
function, subsets of real numbers, by defining them on the unit circle, that is a

circle whose radius is 1.
Let @ be a central angle of the unit circle and P(x, y) be the point as

shown in the Figure 12.1 then r = OP = 1 = yx*+7, and the six trigonometric
ratios also called trigonometric functions or circular functions of & are defined
as follows:
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sine@ = %=y i

. X
cosine@ = = = . L
: T P(x,y)

tangentd = £ (x#0)
X

% —1/0 X . fi X
cosecant @ = — (y=0) \ /
¥

1
td = - (xz0 ' Fi
secan = (x#0) y' Figure 12,1

cotangentd = = (y#0)
}l

The trigonometric functions are abbreviated as follows: y
(1) Sine & as sin & R,
. : X,y
(ii)  Cosine & as cosé t>o

(iii) Tangent & as tan & 5
(iv)  Cosecant§ as cosec @ X' = o X
(v)  Secant & as sec8 J e

(vi)  Cotangent € as cot&
It can be seen that
$iné, andcot@= S?SB ’
cos g sin @
Since any real number can represent the length of exactly one Arc on the unit
circle. If t is a positive number, we can find the
Arc of length t by measuring a distance t in

counter clockwise direction along an Arc of the

y
A
unit circle beginning at C(1,0). So we get /-\ C(1.0)
. X

ArcCP of length t. X 3] >
If t is a negative number, we can find \th—o

Figure 12.2

tan@=

the Arc of length t, by measuring a distance t Pxy)
in a clockwise direction along an Arc of the
unit circle beginning at the point C(1,0). v
In each case, we get a unique point ¥ Figure 12.3
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P(x,y) that corresponds to the real number t. We also know that if s is an Arc
which subtends an angle & at the centre of circle with radius r, we have s=r@

(& in radians).
Let s = t and r = | then above equation reduces 1o t=6 or 8=t.

Thus we obtain sin & =sint , cosec8 = cosect

cos@ =cost , sec & =sect Y
- tan# =tant , cot @ =cott. A
where @ is the angle measured in radians and t is a P(x.y)
t
real number. ' o'y

Thus we can think of each trigonometric X ol T »*
expression as being either a trigonometric function \ ’/
of an angle measured in radians or as a
trigonometric function of a real number t.

Thus the trigonometric functions can be
thought of as functions that have domains and ranges that are subsets of real

y Figure 12.4

numbers.
12.1.1 Domain and Range of Trigonometric Functions
(a) Domain and Range of Sine-and Cosine Functions
Refer to Figure 12.1, sin 8 =y cos@ =x
Domain of sine and cosine is the set of real numbers R. Since point P(x,y)
is on the unit circle
-1<y<l and -1<x<1 or -l<sin #< 1 and-1<cosésl.
Thus the range of sine and cosine functions are [-1, 1].
(b)  Domain and range of tangent and cotangent functions’

Refer to Figure 12.1. tané = 2 x#0.

X
When x#0, then terminal side OP cannot coincide with QY or OY’; in

other words

9w wils w25 & 2
2 2 2
Therefore for the tangent function.

...... or 6% (2n+1) %; neZ

Domain = R—][t| t=(2n+ ])g; ne Z} and Range = R (the set of real numbers)

L
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. "y
Since cot 6 = —, y#0.
11‘

when y#0 then terminal side OP does not coincide with OX or OX’ in other
words

00, xm,+2m,...... or &+ n}r,neZ.

Hence in case of cotangent function Domain = R—{tlt=n 7" ,ne Z)

Range = R (The set of real numbers)

()  Domezin and Range of Secant and Cosecant functions
Refer to Figure.12.1. cosec9=lv v#0
y

If y# 0 then as seen in the case of cot@, # # nxrine Z,

Domain of cosec function = R-{tlt= nx;neZ}.
Since | y | = Jy_z <xf+yi=1 (Figure 12.1)

Hence ly | < 1. or ﬁzl.
¥

Thus either lzl or 1. < -1 that is cosec 82 | orcosec 8< -~ 1.
> Ey
That is cosec @ attains all values except those which lie between -1 and 1.

¢ 1
Hence Range of cosec function = R- {t| -1 <t < 1}.Now sec@= —, x#0. Then
: ' X

as seen in the caseof tang. & 2 (2n+1) .’25, ne 7.

-

Domain of secant function =R - {tlt =(2n+ 1) ;—T-, ne Z}.

Also bl = \[FS1/x2+y2=l

Il <1 orLZ 1¥
&

Thus either l2 1 or ls— I that is sec821 or sec< - I.
x X
That is sec @ attains all values except those which lie between -1 and 1.
Range of secant function =R- {t| -l <t < 1}.
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We now give table of the domain and range of trigonometric functions;
which are written in words as well as in symbolic notations:

Function § Domain

Rangch

y=sinx | All real numbers; —oo < x<oo ~1< real numbers <1
-1<y=<1

y=cosx | All real numbers; —co < x<eo —1< real numbers <1
~1<y<1

y=tanx | All real numbers except (2n+1)—72£, ne 7. | all real numbers;

: /1
—co X<oo 1 XFE (2n+1)5,neZ. —oo <y< oo
y=cotx | All real numbers exceptnz, ne Z. all real numbers;
| —ce< x<eo » x# N7,NeZ. — o0 <y< o0

y=secx | All real numbers exccpt(2n+l)%,ne Z.| all real numbers<—1 or21

—oo < X<00 1 XF (2n+-1)§,ne 14, y2lory< -1
y=cosec x| All real numbers except nz, ne Z. all real numbers<—1 or=1
—oo< X<eo 3 X¥ D ,NEZL. y=lorys-1

Example 1: Find the domain of each of the following functions.
(i) sec 3x (ii) tan% x (i) cosec % X
Solution (i) We know that the domain of sec tis —eo<t <oo t#(2n+l) —’25, ne Z.
If t=3x, then dom sec 3xis —o<3x< oo» 3x # (2n+1) EJE » ne’
or —co< x<oo, Xx#F(2n+1) % , NeZ
Dom sec 3x = R—{xl x = (20+1) %; ne Z)

. . T
(ii) Domain tant is —eo<t <o, t # (2n+1) 2-, neZ
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(iii)
Let

or

ift= lx then dom tan lx is
5 5

-oo<-1~x<oo, o x# (2n+1) /] ,neZ
5 5 2

or —ooL Y oo, yFE g (2n+1) 7 ,neZ.

dom tan-é—x: R—{ xlx = %(2n+1} 7.neZ}

Domcosectis —oo<t<eo, t# NnA,Nne”
1 I 1 | :
=-2-x then dom cosec —xis -—°°<-2—.t<°°, E x# nr.ne’

1
—eo< Y<eo, X% 20, neZ .. dom cosec ~X= R—{xlx = 2n7, neZ)

Example 2: Find the range of each function.

(i) cos 3x (ii} 3 tan 2x (iii) 2 cosec ;—x

Solution: (i) We know that forallt edomcos t, —1<cost £1

(ii)

(iii)

Let t=3x then —l<cos3x< 1.
Hence range cos 3x is the closed interval [-1, 1]
Since forallt edomtant, —ce<tant <eo
Let t=2xthen —co<tan 2i<oo
Hence -e< 3 tan 2x<eo. Thus Range of 3 tan 2x is R.
Since for all t € dom cosec t
cosect < -1 orcosect = 1
1

Let t=—x
3

Then cosec ; x< =1 or cosec % x2 1.

Hence 2 cosec % x< =2 or 2cosec % x= 2.

1
Hence range of 2 cosec 3 x=R-{pl-2<p<2}.
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12.1.2 Even and Odd Functions
Even Functions

A function f is even if for every x in the domain, f(x)= f(-x).
Even functions are symmetric about the y-axis. For each point (x, y) on the
graph, the point (—x, y)is also on the graph.

The following are the graphs of even functions.

L

T \) oo 7 {}/\u
p ’ U \—/ &

Figure 12.5 Figure 12.6 Figure 12.7

Notice that for any point (x,y) on each graph, the point (—x, y)also lies on the

graph. Therefore, for any x value in the domain, f(x)= f(—x).

Odd Functions
A function f is odd if for every x in the domain, —f(x) = JF(=x).

Odd functions are symmetric about the origin. For each point (x, y) on the

graph, the point (—x,—y)is also on the graph.
The following are the graphs of odd functions.

¥4 ¥t ¥4

KM (xy) ﬁ (0)
3 5 i : X '__hr

(IN (=x,-Y) :4 ...... ;:. ............... 3 (—X,=y) g€ Ahnranasgin.d

Figure 12.8 Figure 12.9 Figure 12.10

Notice that for any point (x,y) on each graph , the point (—x,— y)also lies on the
graph. Therefore, for any x value in the domain, f(x)=-f(—x) or equivalently

-fx)=f(=x).
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Example 3: Prove that: (i) f{x}= x’is an even function.

(i) f(x)= x’is an odd function. 25~) I
Solution: (i) f(x)=x" 20
f=x)={~x)" 15

=x 10-

= f(x) 5.

= f(x) is even. ns -

; SN I T S T ] RN~ e e . Sl
(i) f(x)=x’ . ¢ Figure 12.11
=1 Ei] A3 I

f=x)=(~x)’

_ —,\‘3 415

:—f(xj -l Flgure 12.12

= f(x)is odd

One of the important properties of the trigonometric functions is that of being
either even or odd.

We know from trigonometry that:

sin(-#) = —sin @, cos(-6) =cosd, = tan(-8) = —tan &

 lcosec(—@) = —cosecl, sec(—B) = sech, cot{-f) = —cot§

Thus sinB, cosecB, tand, cotb are odd functions and cos® and secB are even
functions.

Example 4: Is the function f(x) = sinx— cosx even, odd, or neither?
f(-x) = sin{-x) - cos{-x)

= —sinx — cosx

= — (sinx} + cosx

Because -(sinx+ cosy) #-(sinx —cosx)

function and an even

And - (sinx + cosx) # sinx — cosx function is neither even
nor odd.

the function is neither even nor odd.
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12.1.3 Periodicity of Trigonometric Functions

Periodic Function
A function f'is said to be periodic if there exists a positive constant p such

that fix+p)=f{x) for all x in the domain of f The smallest such positive
number p is called the period of the function.

All the six trigonometric functions are periodic functions, because they
repeat their values after their periods. This behavior of trigonometric functions is

called periodicity.

If f{x) is a periodic function then af{x) and f{x} + b are alsc peﬁp’d-ic functions
and the periods of all these functions are the same. Can you say why?

Theorem 1: Show that the period of sin6 is 2m.
Proof: If p is the period of sinf, then
sin (0 + p) = sinB (1)
for all O dom siné.
Since Oe dom sin 8 =R, put 8 =0 in (1), we have
sinp=sin0=0
Thus possible values of p are 0, t &, £2x,.......
The first smallest positive value of p=r, for which sin(6+x) = — sin@
which contradicts (1). Therefore 7 is not the period of sin8
Next put p = 2z then sin (8+2n) = sin®
Hence 2x is the period of sin6.
Theorem 2: Show that the period of cos@ is 2.
Proof: If p is the period of cos9, then
cos (8 + p) = cosO ¢))
for all 6e domcos6
Since Oc domcosB =R, put 8 =0 in (1), we have
cosp=cos0=0
Thus possible values of p are 0, £2r, t4n,.......
The first smallest positive value of p = 2, for which cos (8+2x) = cos6.

Hence 2= is the period of cos6.
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Theorem 3: Show that the period of tan0 is m. _Cne T Iﬂ)
Proof: If p is the period of tan®, then

tan (B + p) = tan® (1) We may easily find out for the

for all 8 dom tanf reciprocals of sin®, cosb and

Put 8 =0 in (1), we have tanf, i.e. cosect, secO and cotd
that

tanp=tan0=0 : s Lo 3
(i) 27 is the period of cosecB

(ii)2x is the period of secB
(iii) % is the pegiczd;‘-’af cotd

Thus possible values of p are 0, 3, +2x,.......

The first smallest positive value of p =,

for which tan (8+r) = tan 8.

Hence = is the period of tan 6.

Example 5: Find period of 5 sin x.

Solution: ‘We know that period of sine function is 2x.
sinx =sin (x + 2w)

= 5sinx=5sin(x+ 2n)

It means that when x is increased by 2z, values of 5 sin x repeats, hence
period of 5sin x is the same as that of sin x.

Thus if f is a trigonometric function; period of cf (c constant) is the same as
that of f.

Example 6: Find period of cos 6x.
Solution: We know that period of cosine functicn is 2m.
cos 6 x = cos (6x+2m)

= CO0S 6(x+2é£).

') -
when x_is increased by —“éz, value of cos Gx remains the same; hence period of
cOS 6x is E()E or Z.

Thus period of cos 6x is equal to the period of cosx divided by 6.

This result holds for other trigonometric functions also

Thus, if f is a trigonometric function, then for any

: tod of fi
constant k, period of f{kx) = FEE("]:_(")
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Example 7: Find period of each function.

. 1 .. X
(i) 2 tan 3x (>i1) 3 sec 3
Solution: (i) Period of -% tan3 x= Perlod;f s
_Z : .
=3 (-~ period of tanx is %)
(i)  Period of 3 sec g- Lo 1°f secx
3
= 2_1’5 (-~ period of sec x is 2m)
3
=3 (2n)=6n.

12.1.4 Maximum and minimum values of certain trigonometric functions
In this section we are concerned with finding the maximum and minimum

value of a function of the type:
(i) a+bsind (ii) a+bcos8
(ili) a+bsin(cf+d) (iv) a+bcos(cO+d)

and the reciprocals of the above, where g, b, ¢ and 4 are real numbers.

Before doing so, we recall that the term a in the above functions allows for
a vertical shift in the graph of the functions. The term b in the functions allows for
amplitude variation of the functions.
Now to find the maximum and minimum for sine and cosine functions we only
need to remember that the maximum and minimum for both sin6 and cos@are 1 ‘
and —1 respectively.

Consider types (i) and (ii) above. These functions reach its maximum |
when both sin@ and cos@are at the maximum i.e. sin@=1and cos&=1. |
So the maximum of a+bsin@=a+/b| (maximum of sinf)

=a+b|()
=a+b| ()
Similarly, the maximum of a+bcos@=a+|b| 2) i

These functions reach its minimum when both siné and cos@are at the minimum
i.e.sin@=—iand cos®=—1.Sothe minimum of a+bsin @ = a +}b| (minimum of sin§)
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=a+|p|(-1)
ik )
Similarly, the minimum of a+bcos8=a—|b| @)

Consider types (iii) and (iv). In these types the values of ¢ and d do not
matter because they do not affect the amplitude of the function, so we treat these
two types in similar way as (i) and (ii).

So the maximum value of a +bsin(c6+d )=a+}p| (5)
and the maximum value of a+bcos (c9+d) a+p| (6)
The minimum value of a+b sin(c8+d)=a~p| (7
and the minimum value of a+b sin (c8+d )=a—b| (8)

Thus, we conclude that, if M and m respectively denote the maximum
value and minimum value of the function, then we have the following formulas.

M =a+lp| and
Let M’ and m'be the maximum value and minimum value of the

reciprocals of the above functions, then clearly for m>0, M >0 and
m<0, M<0

¥
m i
(M e a0 | and

and for m<0, M >0

. v]
8 L
k"h‘" | and

e et

Example 8: Find maximum and minimum values of the functions.

1

i =1+2sin8 il) y =3+2cos(36-2 iii) y =————
QRN "y Sli2ang | () 1y =3+2cas(3672) | (M) Y S e mia(28-15)

Solution: (i) Herea= land b =2
-.the maximum value of y =M =a+]|

=1+[2[=1+2=3
and the minimum value of y =m =a—|p|
=1-]2|=1-2=-1
' (ii)Herea =3 and b =2
M =a+p|=3+|2|=5 and m =a—|p|=3~|2| =
(iii) Let y'=1+3sin(26-15)
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Then M =1+{3 =4 and m=1-3=-2

If M’ and »’ are the maximum value and minimum value of y respectively, then

M'=L=l am:lm’=l=L
M 4 m =2

Sincem<0and M >0

| Find the domain, range and period of each of the following function:

(i) 3 sin 3x (i1) tan—;-x (iii}  cosec 2x
(iv). .cosédx v) 6sec2x (vi) % cot 2%:-{
”, 1 Sesor : T
(vii) —Ztanx (viil)  =cosecx (ix).  secox
2. Find maximum and minimum of each of the following functions:

(@) y=—2+3£sin-&a+ 2) (i1) y =5~ 4sin (6+30)

1 : 1

i)y = V) y=——
Gy 0 4cos 20

19-10sin (36— 45)

12.2 Graphs of Trigonometric Functions

The graph of a real valued function is the set of points in the cartesian
plane, whose co-ordinates are the ordered pairs, belonging to the given function.
For example to graph a function y=f(x), we give a number of values to x, which
belong to the domain of the function, and find the corresponding values of y,
which satisfy the equation y=f(x). We plot these ordered pairs (x, y), join them by
smooth curves or line segments, the diagram so formed is the graph of the
function.

In case of trigonometric functions the points are joined by smooth curves.
Since trigonometric functions are pericdic, it is sufficient to draw graph over a
period. This information can be used to extend the graph to the right and the left,
because the graph will be identical over those values of x which form the period.
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12.2.1 The shapes of the graphs of sine, cosine and tangent
y=sin x and y = cos x look pretty similar; in fact the main difference is that the
sine graph starts at (0,0) and the cosine at (0,1).
Both of these graphs repeat every 360 degrees, and the cosine graph is essentially
a transformation of the sin graph—it's been translated along the x-axis by 90
degrees. Thinking about the fact that sin x = cos (90 - x) and cos x = sin (90 —x),
y = tan x crosses the x-axis at 0, and has an asymptote at 90. This graph repeats
every 180 degrees. :
| y =sinx
m. = S
l 90" 1&?\27‘0‘}0'//560‘ %
-1

lf\ y=cosx :

l 180° 70" 360" *
1
y y=tanx
10
o —femfi
90" 180" 270° 160" *

-1

, Figure 12.13

12.2.2 Graphs of six basic trigonometric functions
(a) Graphofy=sinx,— 2r<x<2x

Since sinx is periodic function of period 2z, whose domain is R, it is
sufficient to draw a detailed graph over the interval [0, 2x]; portions x of the graph
over the intervals [-2#,0], [0,27], [27, 4] and so on will be identical.

Suitable values of x, and the corresponding values of y, satisfying y=sinx
are given below in the form of a table.
Values of y for different angles x, can be found by use of trigonometric identities.
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Take a set of rectangular axes, choosing a convenient length for 30° on the
x-axis and a convenient length as a unit on the y—axis. We plot the points (x, y) to
get the following graph of y=sin x in the interval (0, 2x)

o et gt
30° 60° 90" 120° 150° 180°\210° 240° 270° 300" 330°

_l-l-

y y=sinx on [0,27] Figure 12.14

We note for all values of x, -1 < sinx< 1.

We often call the graph of y = sin x, a sine wave and the graph in the
interval [0,27] a cycle. Extended graph of sin x which is the repetition of the
graph in figure 12.14 is given in figure 12.15.

” oS\ AT . ik
-2n - o U! 3!\___,/"#

E y=sin x Figure 12.15

(b) Graph of y = Cos x, — 2r<x<2m.
The cosine function also has a period of 27, and its range is [-1,1].
Values of (x, y), satisfying y=cosx are given below in the form of a table.
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Plotting the points (x, y); the graph of y=cosx on the interval [0, 2 ], is shown in
figure 12.16.
y

t t %
270" 300" 330° 360

t 1 - i i T
307 60° 90N\ 120" 150° 180" 210" 240°

Figure 12.16

=14

#

y
Extended graph of y=cosx is shown in figure 12.17.

v Y = COS x )
Y’ Figure 12.17

(c) Graph of y=tan x, 0sx< 7

The period of tan x is 7 and the domain is the set R—{xlx=(2n+l)%, neZ}.

When x=(2n+1)-§. neZ or x=1+90°, *270°...... ; the tangent function is not
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defined, at these values of x,it becomes very large,in other words it approaches tee.
In the interval [0, 7 ]as we approach 90° from the left, the tangent becomes

larger positively, that is, it tends to +o; and when we approach 90° from the
right, it becomes larger negatively, that is it tends to —eo. Table of values (x, y)
satisfying y=tan x on [0, 7] are given in the below table. The graph is shown in

figure 12.18.
\ } .73 7 1173 |

—[1.55 {1

X
X 90"
. Figure 12.18
v y = tan x on [0, 2x]
Extended graph of y = tan x is given in figure 12.19.
X
2. -
X* £ X
b T T
24+
" Fi 12.19
Y y=tanx S

(d) Graphof y=cotx ,- rSxsT.
The period of cotangent is also 7.
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Table of values (x, y) satisfying y=cot x on [0, 7] is given below, while graph is
shown in figure 12.20.

T | e 0% 30° 60° | 90° || 1200 | 150° 180°

2.-
1 -
X t + X
0 30 B0°
..1 -
-2+
Y.l'

vy = cotx on [0,x] Figure 12.2(0

Extended graph of y=cot x is given below in figure 12.21, which is the repetition
of the graph given in figure 12.20.

y=cotx Figure 12.21
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() Graphofy=secx,—2r<x<2m.

We know that period of secant is 27, table of values (x, y) for y=sec x on
[0, 2] is given below. Graph is shown in figure 12.22.
x[0°] 30° [ 60° [90° [ 120° | 150° {180°| 210° | 2

Y
i i
¥ 1
] 1
t 1
2T I I
3 1
] 1
) ]
g : : ik
] 1
] ]
] ]
] ]
® -
30 60° 90° 120° 150" 180* 210° 240" 270° 300° 330" 360°
: :
i : y=-1
1 ]
I i
1 |
-2t | |
1 |
] |
] I
, : T
i y=sec x on [0,2x] Figure 12.22
Extended graph of y=sec x
Y
N | |
1 1 ] |
] | ] 1
v\ 21 /i | |
] | ] I
} I ] ]
] I 1 ]
§ ] 1 ]

X — - ' ' : - ; X
=n ! ! T ! 2n ! 3n
1 ] ] 1
1 1 ] ]

1 ] ] |
B | ; : i
1 1 ] t
1 1 ] I
: } g :

W y=sec x Figure 12.23
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(f) Graph of y = cosec x, —2x<Sx<2n
Period of cosec is 2, table of values (x, y) satisfying y=cosec x on [0, 2x]
is as follows:

X b 1 4 - + 3 § e ‘, =X
30° 60" 90° 120" 150" 180" 210" 240° 270° 300" 330° 360°

Y : y=cosec x on [0, 2Tr1E Figure 12.24
Repeating the graph in figure.12.24, the extended graph of y=cosec x is obtained

as given in the figure below Y

-

- 1-=
i
|
1
S I
1
!
1
1
1
|
I
1

L

= -

12
v y = cosec x Figure 12.25
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12.2.3 Graphs of sinA® and cosA© where A is a positive constant.
In figure 12.26 the graph of y = sin@ is shown. -

ARV S Vv

We see that the graph of y = sin® has period 27, so the constant Ain
y = sin A0 indicates the number of periods in the interval of length 27t. If y = sin,
we notice that A = 1. This means that there is only 1 period in that interval.
For example, if A =2, then

y = sin20
means that there are 2 periods in an interval of length 21t as shown in figure 12.27.
The graph of y = sin28 is the compressed version of the graph of y = sin@ in the
x—direction.

AANANANANNANL
VAVAVAVEVARVAVAVAVAY

Figure 12.27

If A = 3, then y = sin38 indicates that there are 3 periods in the interval of length
21t as shown in figure 12.28. The graph of y = sin30 is more compressed version
of the graph of y = sin 8 as compared to the graph of y = sin26.

AAﬂAAAﬂARQAAAAA&I
AR

Figure 12.28
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On the other hand, if 4 = %, then y = sin—f,—ﬂ means that there is only half a
period in the interval of length 21 as shown in figure 12.29. The graph of

y= sin%ﬂ is the expanded version of the graph of y =sin# in the x—direction.

W, A

-1
Figure 12.29
Similarly, multiplying © by a positive constant has the geometric effect of

compressing or expanding the graph of y = cos® in the x—direction.

Thus, multiplying © by a number greater than 1 compresses the graph of sin6 or
cosf in the x—direction and shortens its period. Multiplying 6 by a positive
number less than | expands the graph and lengthens its period. In this case the
period is given by i 2:-

Example 8: Without drawing, guess the graph of cos-——B Also find its period,
frequency and amplitude.

Solation: Here A = % < 1, so the graph of cos%ﬁ is an expanded version of the

graph of cos8.Also in an interval of a
length 2, there is one third of a period.
We have Penicd T The pcnod i.-a also called the wave length.
A rec:prgl:al of the period is called
fatod of cos~l— s 2TJT 8 = 61 k lheﬁbqnency of.lbrl‘unmpns ﬂm
3 3 ' ! Freq.tency-x y
F . A ;(ml; ‘l'he max:mtlm (hstanceqbctween the
Y " hkrmh of the sine or cosme and the horizontal
axis is called the amplitude of the. function.
. Frequency of eaL oyl Thus, the functions v = sin@ and'y = cos8 have
3 6r amplitude 1. In ganeral, the amphtude of a
1 g.-pénbd:c function is half of the difference
Amplitude of cos?B =] _beétween the maximum and minimum values.
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12.2.4 Periodic, Even/Odd and Translation Properties of the Graphs of sing,

cosg and tanég
In section 12.2, we draw the graphs of all six trigonometric functions. If we

examine the graphs of sing, cosgand tang, we observe that they have many

symmetry properties.
In this sections we are concerned with the periodic, even/odd and translatlon

properties of the graphs of sing, cos@ and tang.

1. Symmetry properties of the graph of Sing
The graph of siné is reproduced in figure 12.30.

f(8)
f(e)"sme

U\/T'\)”\/

Figure 12.30

(a)  Periodic Properties
We see that the graph of sing keeps repeating itself after a period of 21

units. Therefore
fsin, (8:!:21:) = sm B

A

This property possessing by sin@ is called the periodic property.

(b)  Even/Odd Property
The graph sing is symmetrical about the origin. This means that if we

replace ¢ by —¢, the graph is changed. Therefore
(sin(=6) = =sin )]
This shows that sin#is an odd function which is in conformity with the
results in theorem of section 12.1.2. This property possessing by sin#é is called the
odd property.

(c) Translation Property
If in figure 12,30, @ is decreased or increased by =, then the sign of f(4) is

changed. Therefore
sin {6 J'l‘) =-sin@

Sl
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This property possessing by sin# is called the translation property.
Using the odd and translation properties, we have

sin (r—6) = sin [—(B—qr)] = —sin(@-n) = —(—sinf) =s5in b

i.c. [sin(z=6) = sind

Thus, the graph of sin@ possesses the following properties:

. Periodic property: sin (@1 2x) = sin @
. Odd Property: sin(-8) = —sin &
) . |sin(f-x) = —-sin&
Translation Property: {sin (T = cin B

2. Symmetry Properties of the Graphs of coss
The graph of cos @ is reproduced in figure 12.31.

o

b (0)

A A
VARE i VARV,

Figure 12.31

(a) Periodic Properties
Like sing, the graph of cosé also repeats itself after a period of 2m.
e e @22 = o000
This property possessing by cos @ is called the periodic property.
(b) Even/Odd Property
| The graph of cos# is symmetrical about the y—axis. This means that if we
replace @ by —4, the graph is unchanged. Therefore ' cos(—#) = cosd|
This shows that cos ¢ is an even function which is also in conformity with
the results in theorem of section 12.1.2. This property possessing by cosé is
i called the even property.
()  Translation Property
If in figure 12,31, @ is decreased or increased by 7t unit, then the sign of
f(6) is changed. Therefore cos E—ﬂ;—fisé’
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This property possessing by cosé is called the translation property.
Also cos(z—8) = cos[~(r-8)] = cos(r—8) = —cos @
ie. cos(wr—6)=-—cosl
Thus, the graph of cos¢ possesses the following properties:
. Periodic property:  cos(8+27x) =cosé
. Even Property: cos(—8) = cos@
cos(@—rm) =—cosé

. Translation Pro :
et/ {cos (m—86)=—cos@

Symmetry properties of the graph of tan§
The graph of tan® is shown in Figure 12.32.

iSO
f(@)=tan &
I x o " " ir Ir
2 2 2

Figure 12.32

The symmetry properties of the graph of tan® can be obtained in similar
fashion as in the case of sin® and cosB. However, it is pertinent to note that in the
present case the period of tan6 is m. Therefore, the translation property of the

graph of tan8 equals its periodic property.
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The properties of the graph of tan are gwcn as below

r-@’ O ii-‘ J.!’-.“J' i'ut
Odd Property:

i oy (00
T S I tan (7~ 8) = ~tan 6

Example 9: Use the symmetric and periodic properties of the cosine, to establish

the following identity. cos(%—e] =sind.
Solution:
By translating the graph of cosB8 by % units in the direction of the positive 8-axis
the graph of cosB becomes the graph of sin6

That is co{ﬂ——g-] = sin@
|

|
But the cosine is an even function, so m{_{zr_._ 8} = cos(a—g—)

Thus, cu{%-eJ = sind

'-Il..: E‘—m E:I:"J'_ .“;" o
(). . y=2sinx  0<x<2m
(i),  y=-4+sinx 0Sas®

(V) y=Zcosec2x 0sxs2m
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3. Use the symmetric and periodic properties of the sine, cosine and tangent '
functions to establish the following identities. |
(i) sin(%-i-ﬂ) = cosd (i1) co! §+9J = —sind I
(iii)  sin{fr-@) = sin@ (iv)  cos(r—8) = ~cos@
(v) tan{z-8) = —tand (vi)  tan(2x—6) = —tan @

4. For any integer k, deduce that S
(i) cin(@+2kx) = sin@ (i)  cos(§+2kx) = cos8 =
(i) (an(@+2kx) = tan@ (iv)  cot(@+2kn) = cq’;_'{? i _
{v) sec(f+2kx) = secd (vi)  cosec(8+2kx) = cosec@ '

12.3  Solution/graphical solution of trigonometric equations
An equation involving trigonometric functions is called a trigonometric
equation.

There is no general procedure for solving all trigonometric equations.
However, we can solve many trigonometric equations by means of algebraic
methods such as rearranging equations, factoring, squaring and taking roots and
by using the basic trigonometric identities already proved in earlier units.

12.3.1 Solution of trigonometric functions of the type sin6 =k, cos0 =k and
tan@ =k

The simplest trigonometric equations are of the form

sin® =k (1 Did You Know ?

ok 2) An identity is an equation

tan® = k (3) which is true for all values of
where k is a constant. the variable. . !

In this section, we are concerned with to solve these equations, using
periodic, even/odd and translation properties.
In section 12.1.3, we noticed that the sine functions and cosine functions

are periodic and both have period 2m, i.e. they repeat their values every 21 units. "
Thus, if we want to find all solutions of (1) and (2) then we simply add and
subtract integer multiple of 27 to the solutions in the interval 0 <8< 2. We also
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noticed that tangent function is also periodic having w as its period. Thus to find
all solutions of equation (3), we add and subtract integer multiple of & to the
solutions in the interval 0 <B<m.

Thus, to find all solutions of such trigonometric equations, first of all find
the solution over the interval whose length is equal to its periods and then find the
formula for all solutions of the equations.

Example 11: Solve the equationsiné =

.

|-

Solution: We have sin 2 = l, so the reference angle is 8 = 2-. Since sine is
6 2 g G

positive in quadrant I and quadrant TI, so the equation has two solutions in the

interval 0 <8< 2%, one in quadrant I and the other in quadrant I i.e.

e=% or 8= g = 2

6 6
Now to find all solutions of the equation, we add and subtract integer multiples of

27 to the solutions —E— or -flg—

| g=_7t_'£+2”'_£_2ﬁ,_{r_+4ﬂ,£-4ﬂ, ..........
' 6 6 6 6 6
e g = 575_‘5_’[.,.2,;’ _5£...2;;, _Dir_+4fr,—5£--4n', ..........
6 6 6 6 6

| These solutions can be written compactly as follows:

6=—§-+27:n or 8=5Tﬂ+2irn for nj=0,%1, £2,..........

Example 12: Solve the equationcosé =

IJ]-—-

Solution: We have cos—;i = % , so the reference angle is 6 = % . Thus, the
equation has two solutions in the interval 0 <B< 2m, one in quadrant I and the
. . Fia m s5r
| other in quadrant I ie. 8= T 8= 2;1'-—-5— g

To find all solutions of the equation, we add and subtract integer multiples of 2x

; 5
to the solutions i;— or —3”—
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=" Z son E ong, Evan, Z_un,
33 3 3
or 0= 37 on T o I vam, 2 g
33 3 3
Thus, 9=§+2J’[ n or 9:57”+21r n Sor n =0,21, 2,0 are all

solutions of the equation.

3

Example 13: Solve the equation tan 8 = prat

Solution: We have tan% = g, so the reference angle is ¢ =— Z The tan®

is negative in the quadrant II and quadrant IV, however, in the interval 0 <8<,
the equation has one solution in the quadrant Il i.c. 8 = n—% = 361

Thus, all solutions of the equation are given by

8= —§£+211' nforn=0x1,+2,........

12.3.2 Graphical Solution of some Trigonometric Equations

Recall that the graph of a function is the set of all points whose
coordinates satisfy that function. If the graph of two functions intersects, then the
coordinates of their intersection points represent a pair of numbers which satisfy
both functions. The points of intersection are called the solutions of the given
functions. These facts can be used to solve trigonometric equations by graphing.
In this section, however, we are concerned with the graphical solution of

trigonometric equation of the type:

. sin9=i
2

. cosf =6

) tan 6 = 28

in the interval —% <@= —i—f—

The method of graphical solution of such equations is illustrated through the

following example.
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Example 14: Use graph to find the solution of the equation cosf — 6 = 0 in the

interval -~ <a<Z.
2 2

Solution: The equation cos6—6=0 can be written as cos0 =0

lety=cosBand y=6

If we draw the graphs of these two functions on the same set of coordinate axes,
then their intersection point (if any) must be the solution of the given equation.
We construct the tables of values of the two functions as follows:

y = cos#, il gl
2 )

4 Y
A
= y=cos9
=3 0 B i
2 4 2

=1 %

Figure 12.33
We see that the graphs intersect at point A. The point lies about midway between
0 and % Thus, we estimate this solution as 8 =%.

Verification. Substituting the value of 8 in the original equation, we obtain

cos 7 —£=0
4 4
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3.14
= 0.71- e 0 [ = 272 =3.14 (APProx.))
= 071-0.79 =0
= -0.08 =0

This agreement seems quite good for a graphical approximation.
(Note ! 1)
(1) If the graphs intersect at more than one point, the other solutions of the
equation may similarly be estimated.

(2) We could have estimated the solution as coordinate pair (g,y). However, the
variable y does not appear in the original equation. Hence, we are
interested only in values of the angle that satisfy the equation.

(3) A process of successive trial and error with use of trigonometric tables or
scientific calculator would give the x~coordinate of the intersecting point

as accurately as desired.

| EXERCISE 12.3 I

1. Find ali solutions of the trigonoiﬁétric functions graphically.
, 2 3
(i) sm0=—‘/;— Gi) cos¢9=-—\/-;— (iii) tan@ =3
(iv) cosf = % (v) tanf =-1 (vi) sin@= —%

12.4 Inverse Trigonometric Functions

12.4.1 Inverse trigonometric functions and their domain and range
We know that if f: x — y is one to one and onto, then there exists a unique
function g: y — x such that g(y) = x, where x € X is such that y = f(x). Thus, the
domain of g = range of f and range of g = domain of f. The function g is called the
inverse of f and is denoted by f.
Thus, fo)=y=2fiy)=x
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(a) The Inverse Sine Function
Reproducing the graph of the sine function

{(x,y) | y=sinxe R}
y

F

+14

—1+

4
Figure 12.34

It follows from the horizontal line test that any line y = b, where b lies between —1
and +1 intersects the graph of y = sin x infinitely many times. Hence the function
is not one to one. However, if we restrict the domain of y=sin x to the Interval

[—%, 12’.], the restricted function y = sin x, —%S X S% represented by bold

portion of the curve in Figure 12.34 is one-to-one and hence will have an inverse.
This new function with domain [——-g-. %i and range [-1, 1] is sometimes called

principal sine fonction and is denoted by Sinx (with capital S).

The inverse sine function denoted by Sin™' is the inverse of the principal sine
function and defined by:

y = Sin"'xif and only if x= Siny, -1 <xs 1, -éf <y sg

That graph of y = Sin~'x can be obtained by reflecting y

the restricted portion of y = Sin x about the line y = x.
The reflected graph of y = Sin~'x is illustrated
in bold portion. iy~

| Here y = Sin~lx means that y is the angle between
T A . . = I
—Ealld —];: (both inclusive) whose sine 1s x.

The superscript —1 that appears iny=Sin"'xisnot 4

an exponent i.e. SinT'x# ——.
- Sinx
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Inverse Relation of General Sine Functions
Generally y = sin”'x gives the relation defined by

y =sin’x if and only if x=siny, .
for-1<x<1,yeR
The various values obtained for a particular x represent q\&:

the angles for which x = sin y and are called the
inverse values of general sine functions. Since the 2

domain of sinx is not restricted, sin”'x is not itself a function. :

This can be proved by vertical line tes. G

Example 15: Find the values of €4
(@)  sin™ (%) i)  Sin’( ; )

Solution (i): Figure 12.36 shows the graph of
y = sin"!x for y € R. The line x="1 cuts the
graph at more than one point shoxzving that sin"'x
is not a function. However the intersection of y = sin"'x

and x= ;_ provides the various values of sin™! (%)»

Hence from the graph in Figure 12.36 the solutions

Figure 12.36

of y=sin“(%)are
y=-’£— +2k7m, ke Z or y=i6’5+2k;z,kez

ieye {%+2k7r,ke Z2) U {—56£+2k7r,ke'2}

(i) Only one of the above numerous Values satisfies the equation
iyl . P . X )
y = Sin (E); that is, the value which lies in the interval [——E, E]' Looking at

. 1
the graph again % is such a value. Hence y=Sin™ (—2- )= y= 5
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‘ The notation Arc sin (with capital A) is sometimes used for Sin™.
' Example 16: Find the exact values of the following inverse functions
V3 PNl = o ]
—} @git)  Sin™ (-—)
2 2

after evaluating their corresponding inverse relations.

i (i) Sin *(1) (i)  Sin~'(

Solution: (i) Lety:=Sin""'(1), we seek for the general sine function sin(y),
| the values of y whose sine is 1. They are { %-}-Zn T,nel}.

Out of these values , the solution of

y=Sin~'(1) is %e[—~%’%]

(i)  Similarly the solutions of y = sin™' (—22’-) are

T T
{—3—+2nﬂ, neZ} U 12--3 +2n7,ne Z}

However, y=Sin™ (%) , where ye [—%*%] isonly y= %

(iiiy The general solutions of y =sin™' (- %'} are
ye (-Z +207,neZ} U {—16’5 +2n7)

1
However y=Sin""' {—5) yields y= -—-765.

Important Results. The relationship ff~ 1 (y)=yandff ! (x) = x that hold for

every inverse functions gives us the following important results.

r T
Sin ' (Si =y if-= gsy< =
in (Siny)=y i ) y 5

Sin(Sin'x) =x if —1<x<1
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3 T
R . . | . | 2t
Example 17: Find (i) Sin [tan (-———-2 )] (ii) Sin [tan3 ]

Solution: (i) We know that tan% 1

iz
Let = Sin™' | tan — |, then = Sin ™' (-1
y [ 4 ] y=Sin"(-1)
By definition Siny=-I, if - i;- y S%
. . . T , A . Y 4
Thus y is an angle in the interval [—-i-, —2—] whose sine is -1, it follows y = _E

(i) Let y=Sin™[tan -;5 ] Astn % =3 and Be [-1, 1]
Hence no values of y exist which satisfies y = Sin™' (\/5 )

Thus the solution set of y = Sin™' [tan %] is empty.
(b) The Inverse Cosine Function
In figure 12,37 we reproduce the graph of the function
((x,y) | y=cosx,xelR -1 <y <1}
Because every horizontal line y = b, where b lies between —1 and +1 intersects the
graph of y = cosx at infinitely many points, it follows that cosine function is not
one—to—-one. x

et
oy

Figure 12.37

However if we restrict the domain of y = cosx to the interval [0, 7] as illustrated
by the bold portion of the curve in figure 12,37, we obtain a decreasing function
that takes on all the values of the cosine function one and only once. This new
function is called the principal Cosine function and is denoted by Cosx (capital C).
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The principal cosine function has an inverse denoted by Cos ™' .

The inverse cosine function Cos ' is defined by
y = Cos ' x if and only if
x=Cosy, for-1 <x< l,and0 <y <7
This is also referred to Arc cosine function. Using general properties of inverse
functions, we obtain _
Cos (Cos ™' x) = Cos (Arc cosx) = x, if -1 €x<1,
Cos™! (Cos y) = Arc cos (Cos y) =y, if 0 <y < 7.
The notation Arc cosx (Capital A) is sometimes used instead of Cos™'x.
The graph of the inverse cosine function can be found by reflecting the bold

portion of Figure 12,38 in the line y = x. The resulting curve of y= Cos™' x is show
in Figure 12.39 in bold portion.

= i
» & y = Cosx
Tz 0gxsn
\J
. Figure 12,38 ¥y Graphot Cosx Graph of Cos x and Arc Cos x  Figure 12.39

Example 18: Find the exact values of
(i) Cos™ 0 (ii) Cos"{%) (iii) Cos™ (-_—;:) (iv) Cos™ (-g)

Solution: (i) Let y=Cos™'0, weknow that
y = Arc cos (0) if and only if
cosy=0Oand ye[0, 7]

Consequently, y= 12{ and Arc cos (0) = %
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.. | 1
(ii) Let y = Cos ™' (—= ). We seek the angle 0 <y < x, whose cosine equals —=
’ 7z ia T2

I ¥
Cosy= — ,0=5y<nxw = =— .
y \/E b y 2
1 F/3
Thus Cos™' (—=)= —
' V2T 4

(iif) Lety = Cos™ (—%), we seek the angle whose cosine equals —%. The

- . T
reference point in the first quadrant 133.

Hence for negative sine we go to Il quadrant by finding supplementary angle.

T 2r
=f-—=—¢€[0,x
y 3 3 (0, 7]
1 27
H C =~ = —
ence osy > =y 3
1 27
Thus Cos ' (-=)=—
( 2) 3

(ivy By definition.
y= Cos™ (-."2—5), if and only if

Cosy=—_‘/§_,and05y <

T " ! -ml.
The reference angle (1st quadrant) is Pt But for negative cosine, y lies in the
second quadrant (as 0 <y < 7).

Th =L -—=—.
us y 5= 6

Hence Cos™ (—_‘E) = 5z
2 6

Example 19: Find (i) Arc cos (Cos2) (ii) Cos (Arc cos 0.5)
(iii) Arc cos (Cos4) (iv) Sin (Arc sin 2.463) (v) Arc cos (cos 4)

where the angles are measured in radians.
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Solution: When finding these values we must pay attention to the ranges of
principal trigonometric functions and their inverse functions.
(i) Since Arc cosine and Cosine {(principal) are inverse function and 2 radians
is between 0 and . Hence
Arc cos (Cos2) = 2 radians
(i) Let 8 = Arc (Cos 0.5), then
Cos 0 =0.5 and by substitution
Cos (Arc cos 0.5) = Cos (8) = 0.5
(iii)  For Arc cos (cos 4), we see that cos4 (general function) has the angle 4
radians in the third quadrant and therefore cos4 is negative. The Arc
cosine (inverse function) of a negative value will be a second quadrant
angle.
Hence Arc cos (cosd4) = Arc cos (—0.653644)
= 2.2832 radians.
(iv)  (Arc sin 2.463) is not defined, since 2.463 is not between -1 and +1.
(v) Principal function Cos4 is not defined as 4 does not lie between Qand 7 .
Hence Arc cos (cos 4) does not exist.

(c) The Inverse Tangent function
The graph of tangent function shows that every horizontal line intersects

the graph infinitely many times,it follows that tangent function is not one-to—one.

y

A |

Figure 12.40

Mathematics-XI




Unit 12 !Graph of ‘Trigonometric and Inverse Trigonometric Functions and Solutions of Trignometric Equations

. . . A T . .
However if we restrict the domain to the interval (—E 'E) , the restricted function

¥/ T, - +
y = tan x, ~3 < x < — is one-to—one and hence has an inverse. This is

calied the principal tangent function and is denoted by y = Tanx (Capital T). This
leads to the definition of inverse tangent function as follows.

The inverse tangent function Tan™' is defined by y = Tan ™' x if and only if

2

z b2
x=Tany, wherc—ac<x<oc,—5 <y<-—

The graph of Tan "' x can be obtained as before by reflecting the principal Tangent

function in the line y = x as shown below:

Example 20: Find the exact values of

,Vy ;Tﬂﬂr.- ; <x<3-

(i) Tan~' (1) (i) Tan™" (=+3)

X'

(iii} Tan (37” )
Solution: Let y=Tan™" (1).

T
We seek the angle y, —£< y<—

2 2 D e

whose tangent equals 1, i.e.,

T T

T =1 ,for-—— <y < —
an y or - < Q¥
= = —
"

¥/
Therefore y =Tan™" (1)= i

(i) Let y=Tan ™" (-v/3). We seek the angle y where —% <y< i

whose tangent —/3, that is

Tan y=—\/§ . —§<y<%

. . T,
The reference angle in the first quadrant is 3 Since tan (- 0) = - tan®.

JF Figure 12.41

2
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- T
Hence y=Tan™ (~3)= 5

(iiif) Tan (—:--) where Tan represents principal tangent function exists only for

i1 b2 3z T
th les in th bet ——and —. Si —g (——,— )
e angles in : e range between 2 an 5 ince > ¢ D) }
Hence Tan ( 3”—') is not defined.

Example 21: Find the exact value of

(i Sin (Cos"l/;-) (i) Cos[Tan™" (-1)]

(iii)  Sec (Sin"%) (iv) cos [Tan™' (=1)]

Solution: (1) We first find the angle, y € [0, 7] such that
3
Cosy=- o
or y=Cos™ (3?-) SRY= %E [0, 7]

B

Now Sin (Cos ™ T) = Sin(y)

o T
—Sm(6)—

3| —

(ii) Lety= Tan ' (~1). We first seek the angel y € (—E,E) for which
2m2

4 22
Now Cos (Tan"" (-1)) = Cos (y) = Cos (—%I—} is not defined because Cos is the
principal Cosine function whose angle must be in the interval 0 to 7.
Since —-% g [0, 7], hence Cos (-%) is not defined .

(iii)  For Sec (Sin™ ,;_) ,let y = Sin ™' %::rSin y = %, then by definition y
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is the angle in the closed interval [—12’-, 32’—] such that

. Ny ix
Sin y —.2_:> y = 5
Hence Sec (Sin™' 1) =Sec (E) Ly 2 &
2 6 3 3
. . e - /4
(iv) Asinpart (ii)) Tan™ (-1) :Z—

Here cos6 is the general cosine function.

1,- 2

Hence cos [Tan ' (=1)] =cos (—%) = —=—.

w[oiEd 2
(d) The Remaining inverse trigonometric functions
The inverse cotangent, inverse secant and inverse cosecant are not used
very widely. However, we list their definition as follows:
(i) y = Cot x, where 0 <x< 7t is called Principal Cotangent Function
which is one—to—one and has an inverse.

y = Cot "' x means x = Cot y , where 0 <y <r and
XE (—oo, +02)

(i) y = Sec x, where 0<xsr, x #% is called the Principal Secant

Function which is one—to—one and has an inverse.

y = Sec ™' x means x = Sec y where

O<y<urm, y#i;— and | x| 21

(iii) y = Cosec x where -%Sx < % x#0 is called the Principal
Cosecant Function, which is one-to—cne and has an inverse.
4 r
y = Cosec "' x = Csc ™' x means x = Cscy where, oy <y < > and |x| 21

12.4.2 Domains and ranges of principal trigonometric function and inverse
trigonometric functions
For convenience, the domains and ranges of principal trigonometric
functions and their inverses are listed in the following table.
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Functions | Domains - 'Range ki J
y=8inx |-Z<x<Z {51
3 5 5 1” ys ],;-
y=8in"'x |-l sx< 1 | =msvss
y=Cosx |Osxsz ~l<y<i
y=Cos™'x | -15xs1 | Osys=z | |
szanx ----125.-<x<l-j'2E { . v€ & q..‘; :;('J,
L /
y=Tan"'x | xe R LB ORI T N
' oL _2.“455%’
. S
= <21 e
SRR o —-—] oy |7 1%-@'
= HArlxs-1,x21 L
i 5 S0
y:Ser xE[O, E]—{er‘} 11‘: 1y$_],y21
goses [esct et 58 | ve o)
-y =Cotx: xe (0, n')' . |ye R
y=Cot™'x |xe R “&q ye (0, 7)

Example 22: Evaluate: (i) Arc sec 2 (it)  Arcsec (=2)
(ili) Arctan(3.5) (iv) Arctan (-2.3)
Solution: (i) Let 8 = Arc sec2, which is an inverse function. By definition,

Sech = 2, where O [0,7] — {% ]
We Know that Sec i;— =2 =0= %e [0, 7]

(ii) Let 8 = Arc sec(—=2). This is an inverse relation not a function. Therefore,

there are infinitely many values for 8. Since secB is negative, the reference angle

2
lies both in the quadrants (II) and (III) whichare 6,=7% —%: EY
n 4r
=+ _—-=-——.
33
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Hence, adding the multiples of periods of sec i.e. 27 n, we get

{9 E%+2nﬂ' , 4?” +2n 7z, nisany integer.}

(ili)  Arc Tan (3.5) is an inverse function whose solution must lie in (—5 2 )

Since exact values for Arc tan(3.5) are not known, we put a calculator in radian

mode, to get
Arc tan (3.5) ~ 1.2925 rad.

t ¥/ /5 .
(iv) By definition of inverse tangent function _E< Arc Tan <-2—. Using a

calculator we have, Arc tan (-2.3) ~ -1.16

Example 23: Evaluate: (i) tan [cos™ (—% ]| ' (ii)  tan [Cos™ (—% )]
ave —I l . -1 1
(it1} Tan [cos (-5)] (iv) Tan [Cos (wE J]
|
Solution: (i) For cos™ (——:li), we seek an angle whose cosine is (—5).
The reference point is ]35 But cosine is negative in the II and III quadrants.

Hence the required angles are (Jr—g) and (7t+§). Adding the period

2n7 we get, cos“‘(—%)e {2?”+2n7r}U{%ﬂ+2nn],neZ

Now tan(%r+2mt)=tan(2?ﬂ)=—«[3_and tan(4—;r~+2n;:)=:an(f3£)=+\/§
-, tan (cos (——))—tan 2? U {tan ={- \/5 +\/_}

(ii) Cos'l(——;—) = Arc Cos(—%) =2xe [0, #7 But tan ({ )= —«E

Therefore tan (Cos ™ (—% N = [——\/5 } only
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(iii) Again cos™ (—%) = {23£+2n7r} U [ﬂ+2n7r}

2r T 4z
Bl’ i M= = dl — __’_
ut since 3 e( 5 2) and also 3 ( > 2)

Neither -2-;—[- nor 4711- could be the argument of principal tangent function. Thus

Tan (cos ™ (——;— )} does not exist.
i . B i PE
(iv)  Similarly Tan [Arc cos (ua )] =Tan (?) is not defined.

Example 24: Evaluate

(i) Arc sin(sinlzT”) (ii) Arcsin {sinlzT”)

(ii) Arc cos (cos 297”) (iv) Arc cos (cos 23—75-}

Solution: (i) As -IZTJIE [-—— ].it follows that

Arc Sin (smlgsﬂ—) :&IZT”

However, since sin (_2£) = sin [2:r+—2—— I= Sm2_7£

5 5 5

g T E ], we find that
5 2
Arc sin (sin -l-g-—) = Sin™ (sm-?-zr-) 27,
5 5 Th
(ii) By definition of inverse relation of sine function
27 12»
Arc sin (sin — )= —
sin ( 5 ) 5

21

(iii) Arc Cos(cosngx) # 2

becausengﬂ g[0, 7]
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V4
But 00529_11' =cos (4Jr+£)=cos£ and—¢€ [0,x].
7 7 7 7

Hence Arc cos (cos?'g—ﬂ) o
7 7
(iv) By definition of inverse relation of general sine function, we see
that ¥
Arc cos (cosngﬂ) exists when
297 297 ' 1 -
Arccos(cos7)-—7- oo » X
R : . S . L.

Example 25: Find the value of sin[Tan™ (-x)], x being W7ol X
a positive number

Solution: Let Tan™' (-x) = 0. Then tan 0 = -x, and \ Figure 12.42
8 lies between —/2 and 0. If angle 6 is constructed '
i dard position, as sh in Fi 42, then sind is found to b .
in standard position, as shown in Figure 12.42, then sint 1s found (o be “7===

Hence, sin[Tan™ (=x)]= —=

V1+ x?
EXERCISE 12.4 |

@)  arcsin1) G arccos f@%}) (i) s,m.mf‘:%gin

‘Compute the following expressions

Find the exact value of each expression.

(v) Cosec [Tan'(H] (v} Sin [Tan™'(=1)]
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4. Simplify the given expression, taking u as a positive number.

i) cosec(Sim '-:-;) i) tan (Tari'u)

1A L :
i) tan(Cos' fo=a) v Cos (cos 11

B P et i el s ot el L FE e

12.4.3 Graphs of Inverse trigonometric functions

Inverse Trigonometric Identities

It is hard to evaluate Arc secant, Arc cosecant. or Arc cotangent functions,
when their exact values are not known, since most of the calculators or computers
are not programmed for these functions. For this purpose we introduce the inverse
of the reciprocal functions. The procedure is summarized by the following inverse

identifies:
1. Cosec™lx=Sin™ (%) ,Xx#0 2. Sec”'x = Cos™ (i ), 0
3. Cot'x=Tan™ (%) ,x>0 4. Cot'x = g+Tan™ (%) , X<0
5. Sin’'(=x) ==Sin™' (x) 6. Cos™'(=x) = n~Cos ™' (x)
7. Tan'(-x) = - Tan™'(x) 8. Sin"!(x) = % - Cos™'(x)
Proof. (1) Let y=Sin™ % x0 D

1
Siny

= Siny:-lf . X2 0 = = X
X

= Cosecy=x = y=Cosec’x (II)
From (I) and (II) Sin™' (-I—J =Cosec ' x
x

Similarly (2) can be proved.

To prove (3), let
y= Cot'x  where x>0 (11D
= y =Cot'x, O<y <a/2 = Cotx=y,0<y<n/2
= I/Tanx =y, O<y<x/2 = Tanx =1lly, O0<y<n/2
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= x=Tan ' (l/y) where x>0 (A"
From (I1I) and (IV) Cot™'x = Tan™' (%) , x>0

To prove (5), let
y=-Sin™ (¥) V)
= —y=Sin'(x) = x=Sin{-y)
= x=-Sin(y) = Siny=-x
= y=Sin 1 (=x) (VD
From (V) and (VI)» Sin™' (=x)=-Sin"' (x)
Similarly (6) and (7) can be proved. Finally to prove (8)

let © = 1’2— o (VID)

10 (ehr e % Y =Cos(% _ @), for osg- o<z

/4 .
Now 0 SE - 0< z implies —%S 9572-5 and in this range for 8, Sin6 exists.

iy

Hence from (5)  x = Cos (%-9) = Sin 8, where 8e [-525, :

Now x=Sin8=0=Sin"x (VIID)

Substituting 8 from (VII) in (VII) , we have Sin~'x= %- Cos™x

. . - i3
Example 26: - Solve the equation  2Sin~'x-Cos ' x= T
Solution: The given equation can be written as

T
2Sin'x—Cos ' x + z = 2 +—=7x
2 2 2
ie. 2Sin'x+Sin'x=7x (‘.'sin"x=%—cos" xJ

or 3Sin"'x=7x

V3

2

Wy

= Sin~'x =~J3£ = x=Sin
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Example 27: Evaluate Cos (Sin ™' % +Cos ™ 2—) without tables or a calculator.
. mend o3
Solution: Let x = Sin 3 and y=Cos 3 then
3 Al 3 4
Sinx= 3 and Cos y =~5~ Where x and y are in 1st quadrant.

Wehave Cos{x +y)=CosxCosy-SinxSiny.
We know Sin x, but need to find Cos x, where

Cosx = y1-Sin’x ,as Cos x is +ve in 1st quadrant
16 3

ETT &
Again we know Cos y but need to find Sin y, where

Siny= l-Cos’y, Siny is +ve in Quadrant 1

_h_i_i
T 25 5

Therefore Cos I:Sin'1 %+Cos" %:I = Cos (x + v)

=CosxCosy—Sinx Siny
33 "4l T
25

= —x ———
5 5 5 5
Example 28: Evaluate Sin(Arc tan % — Arc cos%)
I 1 4
Solution: Let u = Arctan 3 and v = Arc cos;,
1 4

then Tanu = -  and Cosv = —. =

2 5 C

. T cn
AsTanuis+ve,andu e [_E’E} hence u must be positive 1.e.

ue [0, %]. Similarly Cosv being positive means v € [0, %‘t ]. v
N 4
We wish to find Sin (u — v). Since-u and v are in the interval Figure 12.43
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¥4 . . o
[0, —2~]. They can be considered as the radian measure of positive acute angles

and we may construct right angled triangles for u and v as shown in fig 12.43.
These triangles show that

1 3
Sinu =—= , Sinv=—
J5 5
2
Cosu= —&, etc.
V5

Hence,
Sin (u - v)=SinuCosv—CosuSin v
1 2.3_4-6_ -2 _-2

= ——X _— =
555 o sy5 55 25
Example 29: Write (i) Cos (Sin~' x)

(ii) Cos (sin” x) as an algebraic expression.
Solution: (i) To simplify, lety=Sin"'x ThenSiny =x for ye [—-125,-72E

We wish to find an algebraic expression for Cos (Sin'x) = Cos y

Since ye [_%’%]’ it follows that

Cosy= +41-Sin’y = v1-x°

Consequently, Cos (Sin~'x) = v1-x*
(i) Let y= sin'x, —1<x<1 which is an inverse relation
—x = sin y is not a principal function. Hence its argument y is any real

number of the set IR . Consequently. Cosy = +.f1-sin’ y = +Vl-x*
or Cos (sin”'x) =+v1-x

Example 30: Express tan (Arc sin x) as an algebraic expression in x if -1 <x < 1.
Solution: Let y =Arcsinx = x =8iny, ye€ [—— —]

Since tan (—%) and tan (%) are not defined, we seek to find
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tany for ye (—%,%); [—%.%] for which ~1<x<1 4 Pley)
. ; A5 j 4 () .
(i)  If xispositive then ye (0,—).
2 y i
o x>0
Figure 12.44 (1) shows the triangle fory. - o
y X
(i)  If x is negative, then o
n r
ye (—~% ,0) and the triangle for y is shown in Figure 12.44 (ii)
Py

L4 y' .
From each of the triangles, XA y'2 =1 [sin y= pAPS x'] Figpre12.44
r

2 2
= =iy =r_r’ =i -x'?)

=  x'=r1vJl1-x?as ¥ is positive in
both the cases whether

ye (0, %) or ye(—%.O)

y reeV. :
Thustan y = = = —=== i.e. tan (Arc sin x) =
X pfl-x? -7
Example 31: Verify the identify
L Cos”x= Tan™ S X for |x|<1
2 I+x
Solution: Let y = Cos ™' x, we wish to show %y =Tan " :_x
x

y _ [I-Cosy

By half angle formula Tan = =
4 S 2 \jl-ﬁ-Cosy

Since y = Cos "' x and | x| <1, it follows that |Cosjf|< landye (0, 7 )

Consequently %— e [0, %] and thus Tan %> 0

We may drop the absolute value, obtaining TanZ = 15Cosy =y (1=
2 [+Cosy l+x
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Thus & =Tan™' L% , as required .
2 I+x

12.4.4 Addition and Subtraction Formulae of Inverse Trigonometric
Functions
In this section we aim at to prove some important addition and subtraction
formulae of inverse trigonometric functions.

e e gy L i -".'::__ '_:._-.—_-_— _- - —
L |sintAs s = Sin! (4B

Let x=Sin"'A = Sinv=A and y=Sin"'B = Siny = B

Since Cos?x +Sin’x = 1, so Cosx = £V1-Sin*x = +1=A>
For Sin x = A, domain is [—%, %] in which Cosine is positive, so
Cosx=+1-A". Similarly Cosy = v1—B* , We have

Sin(x + y) =Sinx Cosy +Cosx Siny
Sin(x+ y) =Sin xCos y+ CosxSin y

= Sin(x+y)= A=A + BYI—B* = v+ y=Sin™ (AVI- A7 + BJ1- B

= Sin' A+ Sin" B =Sin"(Af1= A - B1- B )

28 in"A—Sin " B=35 I-A" —Bvi-8"|

i A e Sy . NGRS LW D et

Proof of this formula is similar to (1), so is left as an exercise
3. |Cos’A+Cos'B=Cos'(AB—VI-4*V1-B

Let x=Cos'A= Cosx=Aand y=Cos™'B=>Cos y=8B

We have sinx =+l - Cos’x = V1 A’
For Cos x= A, domain is [0, z] in which Sine is positive,

So Sin v=+v1-A%  Similarly Sin x=+1-B’
Now Cos(x+ y)=Cos xCos y—Sin x Sin y

= Cos(x+y)=AB—1- A 1- B = x+y=Cos '(AB-Jl-AIJl-Bz)
= Los 'A+Cos'iB=Cos"(ABn\/l—A"'\ll-Bz)
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4. ECc;sw;E‘os"'B Cos"(AB+\/1 A’JL B’)

Proof is lcft as an exercise

5. Tan"A + Tau"'B =Tan &

B dmmei i  p————

Let x=Tan” 'A =Tanx=Aand y=Tan'B=>Tany=B.We

Tan(x+y)= M::Tan(.t+y)=—ﬂ=>Tan"A+Tan"B=Tan
1 TauxTany 1-AB
e TR
6. =>Tan ‘A Tah“B =Tan’ -
' TraB

Proof is left as an exercise.

Example 32: Show that 2 Tan™ A=Tan™ 1_3%

Solution: Put B = A in the inverse trigonometric formula

Tan™'A+Tan'B=Tan™ A58 , we have
1-AB

Tan'A+Tan"'A=Tan™ —f‘—iA—= Tan™ —147
1-A-A 1-A

Example 33: Show that Tan™ 2+ Tan 3 _ran i 7,
4 5 19 4

Solution: Using addition and subtraction formulae for tan™', we have

",
Tan™ §~+Tan“§—Tan"—§—= Tan'l§-+Tan"§)-T0ﬂ'L£
a 5 19 \ 4 5 L
;
3,3 8
=| Tan™ 4353 L T
P33 19
\ 4 5
15+12
= Tan™ 20 —Tan ' L
N
20
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) 278,
ot 20 o8 e 11 19
=Tan 11 Tan T Tan 1_,__27_ 3
20 11 19
513-88
209 _ o 425 o T
=Tan 209+ 216 =Tan 425—Tan 1-4
209

Find x, if

@  Sin! % =-x (i) R Cosi: ?3 =-—g— —Sin~'x
Show that :

. sam=] =1 T T o= ] =41 i E
(i) Sin~ x + Cos x=5 (i) Tan™ x+ Tan -=E

) i X

(ifi)  sec (Arctanx )=v1+x (iv)  tan(Sin~'x) = —
Evaluate. (i) Sin{%—Cc)s"g] (i)  Sin[Arc cos%+ 7]

Show that (i) Cos (Sifix = Sif'y) =/l = x)(1— y?) + xy
(i) Cos (2 Sin~'x) =1-222 -1<x<+1
(iii) 2 Arc Cos x = Arc Cos (2x2-1), 0 sx< 1

(iv) Cos (Arc tan x) =

1+x*

Express the following in terms of Tan™'(x)

(i) Sin'x (i) Arccosx  (iii) Arccotx
Verify that: 1 1
() 2Tan(3) + Tan! (~—) = %
ve =] ﬂ _Q; =1 é — =] 15_
(ii))  Sm (85) Sin (5)~—C08 (17)
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EERNITT g e
Express:  — —Tan™ (—

- )

Prove that

(i) Sin "x+Cos 'y =

=
2
X

|

'y =Tan ' -

-t

125 Solutions of General Trigonometric Equations

Recall equations that contain trigonometric functions are called
trigonometric equations. These will generally have an infinite number of solutions
due to periodicity of the trigonometric function. For example the equation sinf=0
has the solutions: 0 = 0, +n, +2n, ﬁn,;.. which can be written as: 0 = kx,
where k is an integer. In a trigonometric equation, the unknown may not be the
angle itself. For example in cos(2x+1) = 0, the unknown is x while the angie is
(2x+ 1) and the function is cosine. We first use the definition of inverse
trigonometric function to get the angle (2x + 1) and then solve for x to arrive at
the solution of the equation. :
When a trigonometric equation contains more than one trigonoinetric function,
trigonometric i_de'ntities and algebraic formulae are used to transform such
trigonometric . equation to an equivalent eguation that contains only one
trigonometric function.

12.5.1 Techniques for Solving Trigoﬁometric Equations
Many trigonometric equations can be solved by methods already known. The

following examples illustrate by these methods.
1. Using Facterization.
Example 9: Solve tan>x + secx— I = 0 in [0, 2m)

'y
Solution; We have, tan“x+secx—1=0
3 . . . 3
Sec™y — | + secx— | = 0 using identity 1 + tan’x = secy.
or tan"y = sec’y — |
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od
sec’x +secx—-2=10

(secx +2) (secx - 1)=0 Factorizing
secx=—2 or secx=1 _ Principle of zero products
cosx = — 1/2  or cosx = 1 Using the identity cosx =l/secx

x=2n/3,4n/3 orx=0
All these values check. The solutions in [0, 2x) are 0, 2n/3 and 4x/3

Example 34: Solve 2 sinvcosy—sinx=0

Solution: 2 sinvcosx— sinv=0 (i)
= siny{2 cosx—- 1]=0 (ii)
Equating each factor to zero, we get
sinv=0 (ii1)
or COsY = iv
5 (1v)

The equation (iii) sinv= 0 is satisfied by 0 and 7 giving the solution
{2k, ) U {2k, m+7 }, wherek k,eZ
This is all even multiples of x {2k 7} and odd multiples of 7 {2k, +1)x}

which can be simplified to {k7, ke Z}. ‘

The values of the x satisfying (iv) in the interval [0, 7] are:—;£ and 27— %): S?E

Thus the solution of (iv) cosx= % is { 1;— +2kz} U{ %{E +2kz},keZ

Combining the two we get the general solution of the given equation (i) as

(k) U (2k7 +%}U{%” +2k 7 ), where ke Z

2. Using trigonometric identities
Example 35: Solve 4 cos? v +4siny=5=0.0<v- 27 ‘

Solution: We cannot factor and solve this quadratic equation until each term |
involves the same trigonometric function. If we change the cos’ x in the first term

to 1 — sin® x, we will obtain an equation that involves the sine function only.
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4 cos*x +4sinx-5=0

4(1 —sin’x) + 4 sinx =5 =0 cos? x =1 —sin’x
4 -4 sin’x + 4 sinx-5=0 Distributive property
-4 sin’x + 4 sinx - 1=0 Add 4 and-5
4sin’x-4sinx+1=0 multiply each side by -1
(2sinx—1)*> =0 - Factor
2sinx—-1=0 set factor to 0
sinx = 2
X = /6, Sn/6
Example 36: Solve sin2x cosx + cos2x sinx = %
Solution: We can simplify the left side by using the formula for sin(A+B)
] ; 1
sin2x cosx + cos2x sinx = ;i
. 1
sin(2x + x) = 7
L 1
sin(3x) = N3
First we find all possible solutions for x:
3Ix= :—f + 2kn or 3x= :il_n +2kx  kis any integer
&  2kn . 2kn ivi
X=15*+7 or v x =7 +5 Divide by 3

Example 37: Solve sinf —cosf=1,if0<0<2n
Solution: If we separte sinf — cosB on opposite sides of the equal sign, and then
square both sides of the equation, we will be able to use an identity to write the
equation in terms of one trigonometric function only.

sinf —cos@ =1

5in® = 1 + cosO Add cosf to each side
sin% = (1+ cos0)’ Square each side
sin®8 = 1 + 2cos0 + cos’® Expand (1 + cos0)>
1 —cos?0 = 1 + 2cosf + cos’0 sin"0 = 1 — cos’
0=2 cosf + 2 cos’® Standard form
0 =2 cosf (1 + cosb) Factorize

2cos0=0 orl+cosb=10 Set factors to 0
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cos8=0 or cosf=-1
0=n2,3n/2 or O=mn
We have three possible solutions, some of which may be extraneous because we
squared both sides of the equation in step 2. Any time we raise both sides of an
equation to an even power, we have the possibility of introducing extraneous
solutions. We must check each possible solution in our original equation.

Checking ¢ =n/2 Checking 6=n Checking 0 =3n/2
sin/2 — cosm/2 = 1 sint - cosnt= 1 sin3n/2 — cos3w/2 = 1
1-0=1 0-(-1) =1 ' ~1-0=1

1=1 true 1=1 true -1=1 | false
0= n/2 is a solution 0 = 7 is a solution 0 = 3n/2 is not a solution

3. Using Quadratic Formula
Example 38: Solve cos2x = 3(sinx—1 ) for all eal values of x.

Solution: cos2x =3 (sinx-1) given
1 -2 sin* x =3 sinx - 3 double angle formula
2sin’ x +3sinx-4=0 quadratic equation
sin x = =% “9(;:2))(2)(_4) use quadratic formula
sinx = —-352/4_1

sinx ==2.351 or 0.85- 8
The first answer, — 2.351, is not a solution, since the sine function must range
between — 1 and 1. The second answer, 0.8508, is a valid value.

|
|
x=sin™ 0.8508 + 2km,  x =7 — sin” 0.8505 + 2kn l

In radian form,
x=1-0175+2kn x=2.124 +2kn

Example 39: Find the general solution of the equation.

2sin’x + 3sinx—-2=0
Solution: The equation is quadratic in sin x, we get

-3+v9+16 _ —-3%5 |

sinx = =
4 4
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= sinx = i, -2,
2

. . - ] ) :
sinx € [-1,1], it follows that sinx = 3 has a solution but sin x =-2

has no solution because -2 ¢ [-1,1].
- 14 : n Sz,
The equation sin x = 7 is satisfied by the reference angles 7 and 5 in the

interval [0,2x]. Thus the general solution set of the given equation is
{ Jg +2nw} U {%[ + 2nm}, where ne Z

4. A Reduction Identity
Applications of inverse trigonometric functions are very useful in

graphing to study the behavior of some wave functions and also in calculus and
space sciences. It involves an identity to reduce the form of a trigonometric linear
functioni.e. acosf +bsing =c

where a, b, c are constants, either a=0 and b=0

Example 40: Solve the equation.

V3 cos@ —sin =0 i)
Solution: Compare the given equation with the expression
a sin@+ bcos@ we get, a=-~1, b= NE)
Let —sin9+£cosﬁ=rsin(9+a) (i1)

We know that r = Va?+b2, cosa = ——-—a——-, sing = ————
Ja?+b? Jar+p?
3

1=
= r=2, cosgi=—= ,8in0l = —
2 2

The reference angle for o is 3 but since sin o is positive and cosc. negative, the

angle x lies in II quadrant.
/3 2r s
Thus a = (E—E}-i-?.zur: —3—+2n T,neZ (iii)

' Substituting (iii) in (i) gives
| = —-sind +J§ cosf = 2sin (8 + o)
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=25in(6+g§£)=0

= g+oa=kx, keZ

= 9=kﬂ'-g§£—2nﬂ,nez
2n
or =—? +maA, meZ

S.S.={-——2—3£ +maZ,meZ ]={2ch +ma,meZ}

|
EXERCISE 12.6 ‘

1. Solve each equation giving general solutions.

. 3 .. 4 1
(i) CoS X =T ) (i) sinx= r
Gii) tanx=—3 Gv)  cos (26 - —’-;—}=-1
(v) sec£=—2 (vi) 4cos*x-1=0
2. Solve each equation. Use exact values in the given interval.
@) (sin x) (cosx) =0 , 0< x<360°
(ii) (sin x) (cot x) =0 , 0<x<2x
(iii) (secx-2)(2sinx-1)=0 \ 0<x<s2r
(iv) © (cosecx—2)(2cosx-1)=0 , 0<x<2x
3. Find the solution sets of the following equations.
@) c0s0 = sinf (ii} tan® = 2sin® (iii) sinf = cosecH
(@iv) 40052(—8-)—3= 0 {v)sinx cosx =§ (vi) sin20 + sin@ =0

4. Solve the following equations.

(i) 2sin’x-3sinx+1=0 (i) cos?x sinx=2

(iii) cos Te—sin'x=sinx (iv) cos2x+cosx+1=0
) 3

(v) 1-sinx=2cos’x (vi) tan2x=§secx

(vii) 3 — sinx =cos 2x (viii)sin® + cosd = 1
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REVIEW EXERCISE 12

1. Choose the conrect option.,

—1 for all radian solutions.

{i). Solve sin 4x cosx + cos 4x sinx=
T 2% n 2n 2% T 2%
@ =+ kGt O S SRk @ 2 g =Tk
SHIES ®) 10 ) 20 { D 3
(ii) Tan+/3 —Sec’! (-2) is equal to
(@)« (b) ~n/3 (©) w3 (d) 2n/3
(i) ¥ Sin'x =y, then
(@) O<y<n  (b) -m2<y<w2 (c)0<y<r  (d)-ni2<y<m/2
(iv) sin (Tad' x), |x| < 1is equal to
x I ) 1
() (b) (2); (d)
N 2 ) 1+ x* 1+ %2
(v) Tan’ [-‘E]— Tan™ ( y) is equal to
\Y Xty
a fi3 ()= Sn
(a) 5 (b) 3 -)4 (d) =7
2. Find the period of each function.
(1) —2cosec Tt x (i) 6tanzmx  (iii) i;:icos[——ﬂzij
3. Solve the following equations.

(1) sin2x=cosx (ii) sin’x+cosx=1

4. Prove the following.

() 2Taﬂ 13_2 (i) Tano' +Tail
13 4
—ll o}
(iii)  Sin* -5-+s 3 —Sin gé % (1) T 77 + Tai
5. Prove the following.

(i) Cos'A —Cos'B = Cos' (AB+ A+B )
(ii) Ta#A ~Tan'B = Tai (A—B)
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’P(—s 6) QQGZ—S) Q P(1,2.8) m 2 —aj+dk

14— 1+ oy 2 i 2
Intemally—a-w-é-_,v +§k, Externally_37+3% [ i! e
,6-‘:*‘17:':“ No real value of o z2=-3

_’ le Qu&—lzﬁzy
B +T§“'_'i_§£

- , 90° ’ 73° (approximately) Q 99° (approximately)

5. _26 27

% G w27 ’ =g

EET ’15 17 J‘ fﬂ B work = 6 units  [fEA 12 units

T O TR XER G TR 1 T

Y @ v @ v '

’5713=(-i+7j+5k) ’—J;—Tg(—25i+3j+13k)

T ’ —19i—2j+9% ’ 3i+ 643k ’ 38+ 4j~18k

Qs O

’-6}"+j'+47c Q 227+3j- 12k ’ —Si—j+3k
V35
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I @ rin: @ nfinicc @ ntinie @) Finice

Bl @360 @863 Ol Hoors.
3'9'27

: A CrERR!
O O '»O-E 93232 3’3,3,2,2,8
B ’-1+1+3+5+7+9 Q 142448 16Q ABS
2 3
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2 3
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o
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Q——-l—-—m—- Bl -2 Hl

y

B --13 ;20,105 [ ) 292 0r- 292 @ 360036 @2 7
16 7 7 1
€ Docs notcxic G €Y 5812 1827@“7’“'“‘2 -LT




I > KB - L

- Q S(ZIO_I)Q = anﬁ 65 Q4+2J_Q 192
BEE Q n=1,8,=43 Q n=9,a, =256,5, =511 Q a,=3,n=6

i1 8 18
g 42—, S=38 [ Q“ Q_ Q

2'a S=8 9 11 333
3 1_2% 18,12,80r 8,12, 18 2 7

1 EEESELRa  E

Rs. 16384; Rs. 1073741823 |10

n
b | W

WO O & B M
I e e et N ——
26 13 3 57 90 11 18
€ 4-2925.1-2916-229 @ 1--1111=-1168G=436
' 20
QA:x,G:i M-yl H=2"2 BlR-: B 624
X

35 35 35 35
S S - 4and 12 ; 12 and 4 I{). 3and 12; 12 and 3
23 31 39 47

REVIEW EXERCISE 4
Y- 00 ©:9: 9 P>
00 O MO
Q The progression is 8, 7, 6, 5,... Q tio= ~1 QS,, =%(I7—11),S“|r =35

-]
-
-
-
o
v
-

U Maihcmance )




-n i8or19 [N 5.10.17,.... andnthterm156n—]-156375

PE: s [l 2 6a0d18(on18 6and 2 [l 25 [ 196.875 feet

E Q %(4,12_1) Qn(nul);(wz) Q 2n(n+13)(2n+1)
Q n(2n’ - n) Qn06n3~16n2-2n+3) 33 x100x 101

50 % 3333 n(n1): (2 +30+7)

2

E "("+1)(2f;+1)("+3} B n(n+l)(n:8}(ﬂ+9) %(32n3+54n+25)

u’%(n+1)(n3+3n+1) 0 4" 4~ n(n+1)(n? = n 1)

By EXERCISE’S.2 |
£ ey 1-@n-2)x"  3x(1-x""")
u,2+(n—.l)2 Q Tt T

-1 I=(6n=5)(—x)" 6xl—(=x)""]
Q 240 ZH) 27! 1+x (14 x)?

fl—x) 1 -x
EQ 1+7x Q
(1-x)? (1 x) 2
_ 3n’ +1;= n(iZ'n +3n+3) -3n +n:n(n+1)°
n® +3m; §m-(n+.1}(n+5) 3ol +an
32 -132" -n-2) [ 6 +27: T+ 27

B T




Answers

ER' 5.4
m Q# Q 2nn+1 Q % Q §1§
2(3:-:»2) E;,ﬂ 4(n’-1i-4]

REVIEW EXERCISE 5
mo:O0:-0:0-0:-0:-0-

—_"("+1;("+2) %n(n+l)(n+4)(n+5) !%. (7"1‘2)x"
J F =5

gh 111 n(n’ +4n* +4n—1) Q n(n +1)3n* +5n+1)
— o : .
' n*(n+1)?* 3 n(o+1)(4n+11)
g 23" -1
mO “ile- O L
g %n(n+1)[3n2+23n+34] Q SO Q St +30+5)

1
Zn -1

I
I
|
i
q

1 B
23" =D 21-7) » 2An=1)+

MO O € WO,
O 5 €55 HO: &

_Qno stoﬁs,%o Qu QQ Qs

40320 5040'“ 120, number of even numbers is 48 “ Q 125




Answels y |

Qeo u 28801956 m Q 3360 Qsmo ||l125
(12, 1 Q 6720 Q 151200 @ 50400 leo EN 37800 915120

Q 3360 Q 5040 Q 22680 9 7560 Q 30240 -1 12 [ 120

EXERCISE 6.3

mﬁgaﬁ 94 s E 7 4.5&66&220-9

o Bl Dl €O O o ﬁﬂl

EXERCISE 6.4

O 0: 0. 0. O MmO O
-gmg




Answers -

Qd - or_n 10 Cs = 56 -r 41 -27720
0720 24- 20.3290.64@0.98

-mnmmlmww
EXERCISE 7.2

- QI _4x 6x 4x i
y 'y“

9 1+7xy+21x2y’+35x3y +35x*y* +21x°y* + Tx8yS + 27y’
Q ! [y3+5y2+10y+10+-5—+%:l
NG
O 560 @-t2275 .2y st -szﬁs @ s
O-cHMO-10 QP
Q?Oa“b'i Q ].5309£3 nd 5103 14 Q 252x10 ]

B There is no constant term. 9724 9 242
ﬁ 20° +20a’h* +10ab* [ 1. = -885735 | T, = *°c; 12°4°

i EXERCISE 7.3
_Q 1+-{+£+—-—x L 1- —-x+ Anlion o
S 8" 16
Q 4+4x-—x2+§x3 . 95.099 © 1001 Q 5.01330
i PESTS LIRS -1 3 2, = [ 4o
MQIQU




- VI S LSS S B e

Ans“ ers

IIQ Q ®.0.0. 0 Qd@
90720x"y* [ -35840 a=4 | 840 [ 0.951
mQ it =il & 29Q~3 or 29x+3x+1 12x+1+h
Q £6)=40, g(-1)= 5. h(4)=12. k( ) 5 Qn
Q% R Qo,il QL;;;JE

fi Domain f=R Rangef=R

Q Domain £=R— (~4,4) Range f=[0, ) Q%ﬁ
@5 @25 O ome -V ®

Q Dom(f)=R-{3} QDom{’f")=R-—{l}

Range(f)=R—{i} Range(f)=R—{3}

EXERCISE 8.2 L

et ey =g

o il

L9
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2
_:::..q\hg

EARLJIB g

'fh

O

ERB AR AR S8

1

By changing the values of b in the quadratic function, the axis of symmetry of the
graph moves in the x-direction

QVertcx: (0, 0), y —intercept: 0, x — intercept : 0, Axis : 0, opens upward

Vertex: (0, 8), y — intercept: 8, x — intercepts: £2, Axis: 0, opens
downward

Vertex: (3, 4), y — intercept: — 5, x — intercepts: 5 and I, Axis: 3,
opens downward

Vertex: (— 1, L ), y — intercept: -3, x — intercept: 1, Axis: 1, =3,
opens upward

L Oy CY SROR | 0K SO S0

" Mathematics-XI




H
&
i

-n__.xlz kY
’aﬁ } I ‘
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1
35
X+—
3
¥i
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Answers

(0] '
Y e
4 A
® ieiien: @ Ht
kb
i b
'
=81
(3.9 (2 4)
B 2 R
T =
: Fi ;q LY B a
; g
= B +H i =
gl W 1 I’
® i O t
i 17
2 _P mE e
f * Hi+e
_v [} LY I A
(1. 3, (20 (-1, 3}, (-2
12 '
ol |
X 1
A a
1 |
Fd
¥l

(2,-2)
Air speed = 5 km/min, velocity of the wind = 1 km/ min.

REVIEW EXERCISE 8 .

mO: 00 0:0:99:9-

Domain f =[~2v3,~V3 |U[V3,243] f(x) =3x2 ~2x+5

~ Mathematics-XI 4



-ﬁtz,w) QR‘ TR éaz qu
914 QIOMQZ 9.;& BB o-2b--2

=204
{=3,-27}
: (3,-27)
=30
4
3
54
l"\ (1.5,2.25)
7w z2] Q.0
=4 =30z - ol 2 =l
-{k 1
PR
-2]
_3':
] {74,-258)
-4
(1.0)
2384

0,-3)
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Answers
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Answers

(0,0),(2,0),(1,4),0,6)

0 (:m) {6, 0)

a 4 10 18 8 A o
(ol D)' (3'0)| =3 (0, 2) (0' )' (0 )
2 a’ 5

Q Maximum value is 12 at the corner point (6, 0).

ﬁ Maximum value is 20 at the corner point (0, 4).

Q Maximum value is 50 at the corner point (10, 0).
Sl Minimum value is 4 at the comner point (0,2).
Maximum value is 84 at the corner point (0, 4).
Minimum value is 7 at the corner point (1, 0).
Maximum profit of Rs. 1140 if 16 bicycles of model A and 10 bicycles
of model B are produced.
Maximum profit of Rs. 14000 if 200 units of product’A and 400 units of
product B are produced.

g PR

LT RS o



\ns\\cls

Maximum proﬁt of Rs. 1760 lf 8 lamps of model L, and 24 lamps
LS ofmodel L, are produced

REVIEWEXERCISE9
Qa Qc Qc QchQa

BB Maximum value of z is 24 at two different corner points (%i,g;-]md (5,% )
Rs: 112, when X=2kg, Y=4 kg

Maximum value of Zis 600 at A (120,0) and R {60,30)

i Q sin59° 9 cos 30° Q cos 24° Q sin25" Q tan 52"

Q tan 23° 'QJE—\EQ2+J§ @-—2-\/5 Q 243
9J'+J‘ QJEJ"Q 9 Q
-Q 63 56 -Q Q_sa -33

.9'ysin(9+¢)wheresin¢=3'§,cos¢=f!5_ il =G

9 ysin (8 + ¢ ) where sin ¢ =-]%-,cos ¢ =-:% and r =17

9 vsin (8 + ¢) where sin ¢ =~—J_Ei6 ,COS ¢ = -J-l;—_g- and r =29

9 vsin (8 + @) where sin ¢ = %,cos ¢ = % and =2

EXERCISE 10:2

5 12

13713’ 1'7

OO0 mO
169 119 Y o5

.\I Mhcmatics-N1 2422




e T L ek Bt L8 e

O mimo: 9"9”
® 5 @57 & FF Qi tE

- == 1 cos260+— cos49
2 8 :
1. opa. e, 18] 5 ;
- Q cos3x—cos7x Q E[sm 178" —sin66 ]Q 5 (sin A + sinB)
Q -é- {cos P+ cos Q) Q 25in40°® cos3® Q‘—ZsinSQ" sin23°
O:swg @rnpel

B0 0:90:0:0:0.9-0

EXERCISE 11

[ Q a=3,b=23.f3,8=60" Q a=52.7, c=136.6, a=22.7"
Q a=5+/2,b = 52, o = 45° Qa=62°,b=7.44,c=15.86 |
& a=68.5%, a=22.59, c = 24.28 Q a=8822°, f=178° ,a=449.78

B 24.39m EHE 52.9° 36.3m 45.3m [E 11.43m

“ 189. 3mu 61.4 feet m 7.265cm
EXERCISE 11.2

I-Q a =60°, f=30° y=90° Q a =25°, f=123°%c=152
Q a =408, b =166, § = 23.6° Q a =23° y=45°b=57.6

Viathematics=x1 423




Answers

Q a =3.83, §=243°y=553° Q a=106°20", b =159, c =140

Q a=68,b=112, y=75° @ No triangle possible

Q a=1531, f=30°26", y=111°14’
Q b = 409.00, a=22°39", y=46°59" Q a=96°37

Q B=80°0'38" Q y=87°s5 [l Q 2=95.7°, B="50.7°, y=33.6°

Q a=4.0°% f=316° 7= 144.4° ﬁ a=264°, f=36.4°, y=117.2°

EB 7.9cm, 14.8cm [El} 1879km apart

_a 43217, B=64°26", y=72°17 [} 72.9cm

EXERCISE 11.3

The answers are in square units.

1 Q 369.42 Q 83 Q 680 Q 564.7 ﬁ 6.4 Q 355 Q 76662

Q 400.5 Q 651.7 Q 614.5 Q 134736.6 Q 2730.7
- c=22.24, 7=82°8" [ Rs.1125 [N 787 £
EXERCISE 11.4

{10
Q R =3.0, r—IOTQR 14.5,r=6 |HIl r=8.16m, Area =209 m
BN Q 33.07dm Q 14.17dm [N 3V3,7V3.8V3.

REVIEW EXERCISE 11

MO ¢ 0 & 0 -0 0>

Q b=142, a =17.2°, y=21.3° Q No triangle possible.

!
;\huhcnmlijcs-_\[ 424




DIy =N,

Answers

Qa =59°43' B=85°7 c—104Qc 40.68, a=81°43', f=41°17
Q a=14.74, B=10°39', y= 85°56Qa 42.8°, b=52, c =84.7

@ 7-77.5°2=705,b=133 B 2@ & 82.5
Q 83.03° 57.1cm, 20.84 cm [ 25v3x i 168.93 1t[FHl 57.8 m

I-Q R, [—3,3],2—3’r Q R-{x|x=Q@n+)7;neZ},R2x

ﬁ R—{xlx=n§;neZ},R—(—l,1),Jr Q R,{yl—lSySl, yeR},-g-

Q R-{xix=(2n+l)%; neZ},-R—{yI-6S y<6, yeR},Jr

Q R—{xlx=3—n;nez},R,E Q R—{xlx=(2n+1)7—2r; neZ},R b3

@ R-{xIx=nm nez} ,R- (-l%) 27
@ r-{s1x=an+2,nez) R-(-11).8 BN ©-:

0 0. 10!
m, o
° . ®

14
‘ el
Xa = Z + 2 X : ’,F 2%, x
-+ & \7 z 3z
2 2 3 2 2




L,
=+ R

_ Q 0=£+2n7£ or
4

kY1
2

N

Frequency l
3
3

Frequency —,
s

Frequency % -

Frequency -,

T—p “f = —px
- LR LI 5
{ 2 2
1!"
y
y
&
kY4
) T
+ + t >x
It /
‘I!"
3/
Amplitude 1
Amplitude 1
Amplitude 1

Amplitude 1

9=—47£+ 2nmineZ

T
Q 6=—56£+2n:r or 9=7?”+ 2nmne’ Q 9=—3;-+n7r;nez

lethematics_-xr




|_....._-\..__._._.__:. e ;- i

Q 9——+2nﬂ: neZ Q 6——+7m ney

Answers

Q 19——+2mz' or 9—1-16—”-4-2:171' nez

B

=2nm.,ne Z}

I Q) {-£e2mner) f2
® {5
O {Zezmnezfd]

UL SRR SR R

]

-

+ 2mﬂ,mez}

g g

+nr,.n EZ}

(=)}

EOLOLP:0:QL :f

mo 008/

_Q% Ql‘? Q—g—’QDoesnotexist. :
x

, -1 <x<1

Q Sint' r= Tan™!

Q Cos 'x = Tan™! I;XZ , O<x<1

b s
QCot ‘x=Tan"G) O<x<e [E Tan'g

EXERCISE 12.6
11
_Q{%+2kﬂ'} {?x+2kn'} kez

——————————

Mathematlcs~XI
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~ Answers

Q{%i-iklt}U{%-i-kﬂ},kis any integer. ﬁ {%-Hm},kez
Q 6= 3%-!— km , k any integer.
Q fe {%-*-%klt,k EZ} U {%r%;k_kn:,k EZ}
Q {§+2mr, J:EZ}U{%E-i-ZM. nEZ}U{—Z:—;E-th, nEZ} U{%’E+2nx, nez}
5

Bl o o0 180, 270° LAY AL
2 6 3 6 3

6
{ kz}u{5”+2kzr}u{"§+2kx}, keZz
3z .
+2k7z'}U{—2—+ ka} , K any integer.

{—+ 4k:r}U{le+4k7z}U{%+ 4k7r} U{ZS,E+ 4k7r}, keZ

®
®
¢
®
. 4




Answers

Q {%_,_ 2,,,,_-} V] { E.,.z,m-} U {2—7;+ th} n is any integer.

3
Q {’—zr +2m:r} u { % Zm} U {1%‘# 2mzr} , misany integer.

Q {% +2k7r} U{ijsE +2k:r}, k is any integer.
Q No real solution. Q {—+ an‘}U{ 2k } k is any integer.

OO0 - - mO:0 O

-Q{ +2k1r} {7+2kn}u{%+2ku}u{%"+2kn} keZ
Q {2kn +§}U{2kn+3“}u{2kn} kaZﬁ {2kn+——} ke Z
The Authors

Prof. Dr. Gulzar Ali Khan (Retired)

Gulzar Ali Khan received his B.Sc. from Government Postgraduate College,
Bannu in 1975, and M.Sc. from Gomal University, Dera Ismail Khan and Leeds
University, UK. in 1977 and 1981 respectively, and his Ph.D. from Birmingham
University, U.K. in 1986 all in mathematics.

Dr. Khan taught at Gomal University from 1986 to 2000. He joined the
University of Peshawar in 2001, He remained Chairman of the Department of
Mathematics. He has published many research papers in his field of interest. Dr.
Khan has been a member of the Advisory Committee, Ministry of Education,
Government of Pakistan, Islamabad in the subject of Mathematics. He has also been
a member of the National Review Committee (NRC) on mathematics. Dr. Khan

isnow retired.
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Prof. Dr. Islam Noor (Retired)

Dr. Islam Noor is a retired Pr ofessor of Mathematics of the University of
Peshawar. He obtained M.Sc. degree from the same University in 1972. He received
M.S & Ph.D degrees from Temple University (U.S.A) in 1982 & 1984 respectively.

Dr. Noor has published numerous papers in reputed national & internal
journals. He was a member of HEC curriculum committee for revising B.Sc, 4 years
B.S and M.Sc. programs. He remained Chairman of the Department of Mathematics
twice. He has organized seminars at Bara Gali campus, University of Peshawar for
college teachers to cope with the changes made in the syllabus of F.Sc. & B.Sc.

Prof. Dr. Muhammad Shah

Dr. Muhammad Shah did his M.Sc from University of Peshawar in 1998. He did his
Ph.D in 2012 from Quaid-i-Azam University Islamabad in computational Algebra.
In 2010, he was awarded IRSIP scholarship of HEC for Birmingham University, UK.

Dr. Shah has been teaching Mathematics at postgraduate level since 2002 in
different colleges of Khyber Pakhtunkhwa. He has been the Subject Specialist of
Mathematics and Computer Science of Khyber Pakhtunkhwa Textbook Board since
2014 to 2017. He is the editor and reviewer of several textbooks of Mathematics

_and Computer Science.
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